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Abstract

Biological pest control is a major ecosystem service and is known to depend on

landscape heterogeneity. The composition and configuration of landscapes can

affect natural enemy communities, trophic interactions, and pest density

within agroecosystems. However, local agricultural management can interfere

with natural enemy activity, so the positive effects of landscape heterogeneity

may be disrupted by farming practices. Here, we studied the influence of land-

scape context and management options on the biological control of Lobesia

botrana, one of the main insect pests of grapes. We focused on two comple-

mentary measures: predation rates, which reflect part of biological control

potential, and plant damage, which reflects pest density and the associated

infestation. We used a set of sentinel prey (eggs, caterpillars, pupae) to quan-

tify predation rates across different developmental stages of the pest. The study

was carried out in a landscape-scale experimental set-up consisting of

38 vineyards in Southwestern France. Using structural equation models, we

show that predation rates on sentinel prey were affected by both landscape

heterogeneity and local management practices. Higher pest predation rates

were observed in landscapes with smaller vineyards and in vineyards with low

applications of synthetic pesticides. We observed limited relationships between

predation rates and grape infestation levels. However, our results suggest that

predation rates at the pest pupae stage are significantly shaping infestation

levels. Additionally, pest damage in spring and summer was primarily

influenced by the intensity of local pesticide use and the grass cover in the

field and exacerbated by the decreasing size of vineyards, while semi-natural

habitats had no effect on pest damage. We conclude that links between

L. botrana infestation and biological control potential appear tenuous in our

study region. This is likely due to the high local management intensity, as

evidenced by the negative association observed between pesticide applications

and predation rates. Nevertheless, both predation and infestation respond to

landscape or field heterogeneity and pesticide use. Reducing the use of
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pesticides should be combined with multi-scale diversification measures at

field and landscape levels to amplify the predation potential.

KEYWORD S
complementarity, farming practices, landscape, Lobesia botrana, natural pest control, Vitis
vinifera

INTRODUCTION

Crop damage by pests is a major challenge for farmers
given that pests are responsible for around 20% of yield
losses on a global scale (Duflot et al., 2022; Oerke, 2006).
Pest attacks are predicted to increase due to global
change (Simler-Williamson et al., 2019). For instance,
rising temperatures can affect pest dynamics by increasing
the number of generations per year and enhancing earlier
emergence (Martín-Vertedor et al., 2010). Additionally,
elevated CO₂ levels may alter host–pest–pathogen interac-
tions and further influence the geographical distribution
of agricultural pests (Skendži�c et al., 2021). At the same
time, the intensive use of synthetic pesticides has led to
major impacts on biodiversity and ecosystem services,
including biological pest control (Billeter et al., 2008;
Flynn et al., 2009; Geiger et al., 2010), which is a key
service for crop production (Dainese et al., 2019). There-
fore, reducing the dependence on synthetic pesticides
for pest control is of major importance.

Numerous studies have demonstrated that landscape
heterogeneity and crop diversity benefit natural enemies,
which in turn limit pest damage (Beaumelle et al., 2021;
Estrada-Carmona et al., 2022; Letourneau et al., 2011;
Perrot et al., 2023; Redlich et al., 2018). The natural ene-
mies hypothesis predicts that heterogeneous landscapes,
supporting more than 20% of semi-natural habitats
(Boetzl, Schuele, et al., 2020), promote more abundant
or diverse natural enemy communities (Langellotto &
Denno, 2004). Landscape spatiotemporal heterogeneity
supplies not only complementary or supplementary
resources, such as food sources, but also shelter, nesting,
and overwintering sites that benefit natural enemies and
ultimately pest control services (Bertrand et al., 2012;
Clough et al., 2020; Garibaldi et al., 2018; Root, 1973).
Moreover, landscape configuration, such as the average
size of agricultural fields, affects natural enemy commu-
nities and their movements, as well as pest populations
(Clough et al., 2020; Fahrig et al., 2015). Heterogeneous
landscapes with smaller fields have high density of edges
and a higher diversity of habitats, resulting in a higher
potential for spill-over of natural enemies (e.g., arthropods,
birds, parasitoids) from non-crop habitats (Fahrig, 2017;
Martin et al., 2019; Smith et al., 2014).

However, pest control services delivered by natural
enemies may not increase linearly with increasing land-
scape heterogeneity and, in some cases, may fail to
increase at all (Karp et al., 2018). Highly heterogeneous
landscapes may promote higher competition and/or
intraguild predation between natural enemies, limiting
biological pest control (Martin et al., 2013). Additionally,
as noted by Tscharntke et al. (2016), natural habitats may
sometimes fail to enhance pest control, for example, due
to the absence of effective natural enemies, agricultural
practices that disrupt enemy populations, or even natural
habitats acting as sources of pests. Conversely, a positive
relationship between landscape heterogeneity and pest
control does not necessarily indicate a top-down effect
from natural enemies. Lower pest abundances in more
heterogeneous landscapes can also emerge due to direct
effects of the landscape on the pest population dynamics.
For example, heterogeneous landscapes with higher plant
diversity can induce chemical and/or physical host
disruption (Andow, 1991; Chaplin-Kramer et al., 2011)
leading to a lower probability for pests finding their host
plants and then feeding or reproducing, that is, the
resource concentration hypothesis (Root, 1973). How
these two non-exclusive hypotheses, that is, the natural
enemy and the resource concentration hypothesis, actually
shape pest control services in agricultural landscapes
remains understudied, with few studies investigating
how these mechanisms interact to influence pest control
(e.g., Plata et al., 2024).

It is now widely admitted that farming practices may
counteract the benefits of landscape heterogeneity by
affecting natural enemies communities (Ricci et al., 2019;
Winqvist et al., 2011). On the contrary, the presence of
semi-natural habitats can foster positive effects of less-
intensive farming practices such as organic farming on
natural enemies communities and biological pest control
(Klinnert et al., 2024; Muneret et al., 2019; Winqvist
et al., 2011). However, these effects remain poorly under-
stood, as they are taxa-dependent (Muneret et al., 2018;
Ostandie, Muneret, et al., 2021) and because there is a
large variability in the intensity of practices, even within
organic fields (Gosme et al., 2012; Puech et al., 2014). The
differences between organic and conventional systems
are not always consistent, especially in perennial crops
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such as vineyards. For instance, the management of
organic vineyards can rely on large amounts of non-
synthetic pesticides (e.g., fungicides with copper and sulfur)
with negative effects on biodiversity (Karimi et al., 2021;
Reiff et al., 2023). Moreover, the management of inter-row
vegetation in vineyards does not necessarily differ between
organic and conventional fields, whereas intensive tillage
has been shown to reduce biodiversity (Giffard et al., 2022;
Paiola et al., 2020; Winter et al., 2018). Finally, although the
use of pesticides intends to reduce pest densities within
fields, it can have unintended impacts on the resources and
dynamics of natural enemies (Janssen & van Rijn, 2021).
Because landscape context and farming practices directly or
indirectly affect pest populations, it is important to disen-
tangle the relative effects of host density (i.e., plants targeted
by pests), landscape diversity, and farming practices on the
level of biological pest control (Tscharntke et al., 2016). This
remains poorly understood, especially in perennial systems,
such as in vineyards.

The European grapevine moth Lobesia botrana
(Lepidoptera, Tortricidae) is among the most damaging
insects in European vineyards (Delbac & Thiéry, 2016;
Moschos, 2006; Thiéry, 2008). Yield losses vary not only
between years but also among the different generations
occurring during the growing season. In the southwest of
France, grape berry moths often develop a third genera-
tion before the harvest, depreciating not only grape quan-
tity but also quality and causing higher economic losses
than the first two generations. Biological pest control is an
ecologically and economically promising solution but rep-
resents a major challenge as vineyards are one of the crops
with the most intensive use of pesticides (Fouillet et al.,
2022). All developmental stages of L. botrana—egg, larvae,
pupae, and moth—are predated by several natural ene-
mies, such as arthropod predators or parasitoids, avian,
and mammalian predators (Rusch et al., 2017; Thiéry
et al., 2018). Previous studies have shown the potential
complementarity between natural enemy guilds, especially
between parasitoids and predators in both annual and
perennial agricultural systems, and the expected positive
relationship between functional diversity of natural ene-
mies and biological pest control (e.g., Dainese et al., 2017).
Parasitoids can play a critical role in the biological control
of L. botrana, particularly at larval stages, contributing sig-
nificantly to pest regulation (Xuéreb & Thiéry, 2006).
However, L. botrana exhibits a high level of plasticity in its
response to parasitoids, including the ability to acceler-
ate larval development under high parasitism pressure,
which can reduce the effectiveness of this control strat-
egy (Vogelweith et al., 2013). Our study focuses on the
complementarity of predation across different life
stages of L. botrana, without including parasitoids. The
exact roles of natural enemy functional groups and

their complementary effects on different pest stages are
still not fully understood. Higher levels of biological
pest control may result from niche complementarity
between different enemies. For instance, carabid beetles may
be involved in pupae predation (Thiéry et al., 2018), while
birds and arthropods such as harvestmen can ensure larvae
predation (Barbaro et al., 2017; Papura et al., 2020). Flying
adult moths are mainly predated by bats (Charbonnier
et al., 2021), while ants, spiders, or earwigs are involved in
egg predation (Ostandie, Giffard, et al., 2021; Ostandie,
Muneret, et al., 2021; Thiéry et al., 2018). To our knowl-
edge, no study has explored the complementarity of preda-
tion across different life stages of grape berry moths. The
presence of different functional groups of enemies can also
lead to synergistic predation (Sih et al., 1998), resulting in
higher predation rates at several stages or at a particular
stage.

In this study, we investigated how landscape hetero-
geneity and farming practices affect predation of
L. botrana at different developmental stages and the
direct and indirect effects on crop damage in French
vineyards. Thus, we evaluated the potential synergies
between predation at different stages and the result in
biological pest control efficiency in spring and summer
during the first two generations of L. botrana. Through
the construction of structural equation models (SEMs),
we tested two alternative hypotheses: (H1a) pest infesta-
tion levels are determined by predation rates by natural
enemies across different stages, resulting in lower pest
density with higher predation rates over time, that is,
top-down processes (Mäntylä et al., 2011; Martin et al., 2013);
or (H1b) the predator community and the level of preda-
tion rates are driven by pest abundance, with higher
predation rates at higher pest infestation levels, that is,
density-dependent bottom-up processes (Almdal &
Costamagna, 2023). In addition, we predicted that
(H2) landscape heterogeneity in the form of a higher
amount of semi-natural habitats and smaller vineyards
favors higher levels of predation, lower pest densities,
and higher complementarity across time resulting in
reduced crop damage (Sirami et al., 2019; Tscharntke
et al., 2021). We also expected (H3) consistent effects of
biodiversity-friendly practices in organic fields and in
landscapes dominated by organic farming: we predicted
higher predation rates in less-intensively managed
vineyards located in organic vineyard-dominated land-
scapes (Beaumelle et al., 2023; Brusse et al., 2024). We
expected (H4) that landscape complexity would influence
farming practices, which would in turn indirectly affect
biological control (Etienne et al., 2022; Ricci et al., 2019).
Finally, (H5) while the distribution of predation pressure
across pest developmental stages is uncertain, we predicted
that combining predation at different developmental stages
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could enhance biological pest control. This was built on
evidence of niche complementarity among natural ene-
mies, which may lead to synergistic effects on pest sup-
pression (Dainese et al., 2017; Straub & Snyder, 2008).

METHODS

Study area and landscape metrics

The study area was located in the southwest of France
(44�480 N, 0�140 W) in a vineyard-dominated region
(Ostandie, Giffard, et al., 2021). Within this study area,
19 pairs of vineyards were selected along two landscape
gradients. Each pair contained one organic vineyard
and one non-organic vineyard; in total, 38 fields were
recorded. The mean patch size of vineyards ranged
from 4742 to 11,732 m2. Within each landscape pair,
the organic and conventional vineyards were either
adjacent or slightly distant, with a maximum distance
of 430 m between their centers (for vineyard locations,
details are provided in supporting information of Beaumelle
et al., 2023). These pairs were chosen along two landscape
gradients estimated in a 500-m radius and a 1-km radius: a
gradient of semi-natural habitats (ranging from 1.7% to
62.6% in a 500-m radius and 1.5% to 78.4% in a 1-km
radius) and a gradient of the proportion of organic
vineyards (ranging from 2% to 58.1% in a 500-m radius
and 1.2% to 28.1% in a 1-km radius). These commonly
used scales were selected to capture complementary eco-
logical effects: the 500-m radius represents more localized
influences of landscape metrics on vineyard biodiversity
such as spiders and other arthropods and results in terms
of biological pest control, while the 1-km radius reflects
broader landscape dynamics, including more mobile
natural enemies like birds and bats (e.g., Ch�avez
et al., 2025; Le Provost et al., 2021; Moraga et al., 2019;
Redlich et al., 2018). These two gradients were slightly
negatively correlated, but this correlation was not signif-
icant (Pearson’s r = −0.34 and −0.55, respectively, at
500-m and 1-km radii). We considered several landscape
metrics, which represented both landscape composition
and configuration, to evaluate their direct effects on pre-
dation rates and their direct and indirect effects on crop
damage. To examine the effects of landscape composition,
we used the proportion of total semi-natural habitats
(i.e., forests, hedgerows, heathlands, permanent and tempo-
rary grasslands), woody semi-natural habitats (i.e., forests
and hedgerows), vineyards, and the proportion of certified
organic vineyards. Landscape configuration was character-
ized by the mean patch size of vineyards. As we know that
the influence of the landscape on predator communities
and biological control can depend on the spatial scale

considered, we calculated these landscape metrics in
two buffers of 500-m and 1-km radii around the center
of the field (Appendix S1: Figure S1). We obtained the
land-cover map of the study area by combining GIS
layers from the Soil Occupancy Product OSO 2019
(Inglada et al., 2017), the Land Parcel Information Sys-
tem for organic farming (Registre Parcellaire Graphique
[RPG], 2017), and field surveys to complete missing data
on organic vineyards. We used QGIS 3.10 software and
the sf package in R (Pebesma, 2018; Pebesma &
Bivand, 2023) to calculate all landscape metrics.

Local management

Wine growers were interviewed between November 2019
and February 2020 to collect data on farming practices
used within vineyards during the growing period in 2019.
The treatment frequency index (TFI) estimates the inten-
sity of pesticide use and especially summarizes the over-
all dependence on these products (Lechenet et al., 2014).
It is calculated for each pesticide application as the ratio
between the applied dose and the recommended dose
(regulatory dose that is efficient against pests and limits
potential ecotoxicological effects on organisms other than
pests), weighted by the treated surface area relative to the
total plot surface area. Specifically, the TFI for a single
application is given by the formula (Equation 1):

TFI¼ Application rate×Treated surface area
Recommended dose×Plot surface area

: ð1Þ

This calculation is performed separately for each type
of pesticide (herbicides, fungicides, and insecticides). The
total TFI for each category is then obtained by summing
the TFI values of all individual applications within the
crop season. Organic vineyards only used copper- and
sulfur-based fungicides, while conventional vineyards
used a range of synthetic and non-synthetic substances to
control fungal pathogens. Insecticides are used in both
conventional and organic fields against tortricid moths
(L. botrana and Eupoecilia ambiguella) and leafhoppers
(Cicadellidae) with mandatory treatments to reduce the
risk associated with the “flavescence dorée” disease,
transmitted by Scaphoideus titanus (Ball). Herbicides are
only used within rows and in conventional vineyards. We
also used the copper quantity applied (in kilograms per
hectare) to characterize the level of use of non-synthetic
pesticides in organic fields especially. The proportion of
ground vegetation within fields (herbaceous cover in
inter-rows) was also calculated in all vineyards.

Principal components analysis (PCA) of farming
practices (Appendix S1: Figure S2) revealed the differences
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between organic and conventional systems, mainly driven
by total amounts of applied synthetic fungicides, insecti-
cides, herbicides, and, at the opposite, some variation of the
quantity of copper-based fungicides used in organic fields.

Pest predation

We used semi-experimental sentinel approaches to quan-
tify predation rates on pupae, egg, and caterpillar stages
of L. botrana. First, we assessed predation on L. botrana
eggs and pupae using sentinel cards. The cards were com-
posed of five pupae placed on a 10 × 4 cm reinforced tape
on which sand was added to avoid trapping the predators.
At the top of the cards, a strip with 20–100 laboratory-
reared eggs of L. botrana was placed. In each vineyard,
five sentinel cards were placed 5 m from each other in
the central row, between 5 and 25 m from the edge. Each
card was attached to the two-year branch of the vine.
After a 3-day exposure, the cards were collected and the
numbers of remaining pupae and eggs were counted,
using a magnifying binocular in the laboratory for eggs
(Muneret et al., 2019). We then estimated predation rates
for each card and development stage as the ratio of the
number of prey predated to the total number initially
exposed. Predation measures on sentinel prey cards took
place twice, at the beginning of June 2019 and the end of
July 2019 (Appendix S1: Figure S3), which corresponded
to the first and second generations of L. botrana,
respectively.

We assessed caterpillar predation using plasticine
dummy caterpillars mimicking pest larvae. Each larva
was made of white, inodorous plasticine (Plastiline
ivoire—Hardness 1, Cultura, France) and shaped to rea-
sonably mimic the grape berry moth larvae (Barbaro
et al., 2017; Beaumelle et al., 2023; Ostandie et al., 2022).
In each vineyard, 30 plasticine caterpillars were fixed on
10 vine stocks. Five vine stocks were located at vineyard
edges (5 m from the edge), and five vine stocks were
located 25 m from the edge. Plasticine caterpillars
were exposed for 13–15 days (between 21 May and 7 June
2019), and we recorded predation marks by a range of
predators such as arthropods, birds, and bats (Barbaro
et al., 2017). Predation rates at the caterpillar stage were
then estimated as the proportion of dummy caterpillars
showing marks of predator attack left at the end of the
experimental period per plant (Barbaro et al., 2014).

Grape berry moth damage

In each vineyard, we measured the damage caused by
first (end of May to early June) and second generations

(end of July) of the grape berry moth larvae. First-
generation larvae formed silk nests by agglomerating
flower buds with silk threads. These nests represent
damage, as flower buds are consumed, although such
losses are often negligible due to compensation by larger
berries. Each nest generally corresponds to one or two
larvae (Delbac & Thiéry, 2017), making it a proxy for
larval density and pest pressure for subsequent genera-
tions. Silk nests were monitored in 4–5 different vine
rows and along a transect of 100 randomly selected and
independent grape clusters in different vine stock, at the
end of May, avoiding the edge of the fields.

Second-generation larvae can cause greater damage
and lower grape productivity, as they attack developing
grapes, perforating them. These perforations are also a
proxy for larval density, as one perforation generally
corresponds to one larva.

Statistical analysis: SEM

We used structural equation modeling (Rosseel, 2012) to
disentangle (1) whether predation activity is negatively or
positively correlated with pest density, reflecting either
effective pest control driven by predator communities
(H1a) or pest density dependence (H1b). We further
examined (2) how landscape metrics and farming prac-
tices influence directly and indirectly predation types and
levels of infestations (H2, H3, and H4) and (3) how the
predation types influence infestation (H5).

Following the development of a conceptual model to
guide the modeling process, the first step in the SEM
process was to relate observed variables to the relevant
constructs. The complete SEM represents a specific archi-
tecture that includes hypothesized but unmeasured fac-
tors, that is, latent variables, and measured variables, that
is, observed variables. For instance, landscape diversity
was represented by five variables. Among the five vari-
ables, the proportion of semi-natural habitats was associ-
ated with the proportion of woody habitats in a 500-m
radius (L1 in Figure 1), the proportion of vineyards was
associated with the proportion of organic vineyards in a
500-m radius (L2), and the mean patch size of vineyards
within both 500-m and 1-km radii was also grouped (L5).
The other two variables represented the proportion of
vineyards within a 1-km radius (L3) and the proportion
of semi-natural habitats within a 1-km radius (L4),
respectively. Local farming practices were categorized by
the pesticide use, that is, TFI of synthetic insecticides,
fungicides, and herbicides separately, the copper use, and
the proportion of ground vegetation cover (Figure 1). Pre-
dation types were considered separately depending on the
predation type (i.e., egg or pupae or caterpillar predation)
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and on the sampling period (hereafter P1 and P2 used as
suffixes). We distinguished infestation rates depending
on the damage type and the sampling period: silk nests
corresponded to first-generation damage, whereas grape
perforations corresponded to second-generation dam-
age of the grape berry moth. All variables were exam-
ined for distributional properties and were standardized
(i.e., centered-reduced) as we presumed that each
observed variable is linked to one latent variable with
standardized Gaussian distributions. Observed variables

within a group are all positively intercorrelated (Appendix S1:
Figures S4 and S5). A relation model based on a priori
knowledge was introduced (see Figure 1A).

We assumed that all the relationships tested were
linear. Model estimation was based on maximum likeli-
hood. First, we aimed to determine whether the structure
of the measurement model is compatible with the data,
independent of the relational model. We used the confir-
matory factor analysis (CFA, Rosseel, 2012), where all
possible correlations between latent variables are permitted.

F I GURE 1 Structural equation model (SEM) depicting relationships between landscape context, farming practices, predation rates, and

pest damage. (A) Conceptual framework of the SEM model. Circles represent latent variables, and boxes represent observed variables that

serve as indicators of the latent variables. Latent variables relating to the same function or describing a same factor are grouped together

graphically only in dotted boxes of the same color. Black arrows represent the effects of each latent variable within the boxes on each latent

variable in the target box. Correlations between latent variables are not represented in this figure for simplicity. (B) Hypotheses tested within

the SEM model. Two mechanisms were tested, represented by arrows (1) and (2). Arrow (1) was constrained to be negative, representing the

potential regulation of pest density through predation (top-down mechanism). Arrow (2), represented as dashed, was constrained to be

positive to evaluate the potential numerical and/or functional responses of predators, so an increase in predation rates to prey density within

vineyards (bottom-up mechanism). In the following analyses, we will focus on the top-down mechanism with the solid arrow (1). SNH,

semi-natural habitats; MPS, mean patch size; TFI, treatment frequency index.
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The goodness of fit of CFA SEM was tested by applying para-
metric bootstrap on the chi-square statistics (Laroche, 2022).
To further assess model fit, we calculated additional
indices, including the root mean square error of approx-
imation (RMSEA) and the comparative fit index (CFI).

The second step consisted of evaluating the relational
model by comparison with the CFA SEM. This test evalu-
ates whether the chosen relational model is sufficient to
express the correlation structure between latent variables.
First, we compared the CFA SEM with a model where
correlations between landscape and farming practices
were allowed and with direct links from landscape and
farming practices to predation types and infestations.
This model was accepted. Then, we compared the previ-
ous best model with the one without landscape and
farming practices correlations; this one was simpler and
fit as well the data, so it was kept.

In order to refine the model, we further constrained
the relation between predation and infestation in the pre-
vious model (Figure 1B). We successively allowed nega-
tive and positive relationships between predation and
infestation depending on two different hypotheses. The
first hypothesis was that predation reduced infestation
(H1a), in which case the relationship was negative. The
second hypothesis was that pest density drove predation
pressure locally (H1b), in which case the relationship
was positive. The adequacy of model fit was evaluated
using the model chi-square and its associated p-value, as
well as through the examination of beta coefficients
constrained within both models (Laroche, 2022).

To account for the spatial autocorrelation observed at
local scales (Appendix S2: Table S1), we complemented
the SEM analysis with a permutation approach. Plot
identities (organic vs. conventional) were randomized
500 times while preserving the dataset structure. For
each permutation, 95% and 90% CIs of model coeffi-
cients were calculated to assess the robustness of the
observed effects. Effects falling outside both the 95% and
90% CIs were classified as robust, while those outside
only the 90% CI but within the 95% CI were classified as
moderately robust.

Correlations between predation types were extracted
from the SEM model, and the significant correlation
threshold was calculated based on the number of obser-
vations. In our case, the significant correlation value is
below −0.4 and above 0.4.

RESULTS

The predation rate on eggs increased from 19.2% (±20%)
(mean ± SD) in early June to 40.4% (±23.9%) in late July.
Also, pupae predation rates were higher in summer

(51.7% ± 29.6%) than in spring (44.8% ± 23.7%). The average
caterpillar predation was 10.2% (±17.5%). The number of
silk nests per 100 grape clusters in spring ranged between
0 and 11 and was on average 1.34 (±2.68). In the summer,
the number of perforations per 100 grapes ranged between
0 and 45 and was on average 6.26 (±10.10).

The first model, which tested the negative correlation
between predation rates and infestation, converged nor-
mally (p-value = 0.032), and the constraints were respected.
The second model, which tested the positive correlation
between predation rates and infestation, converged also
normally (p-value = 0.029); however, the constraints were
not respected, and the beta coefficients of the effects were
set to zero. The first model is therefore the only one whose
outputs comply with the constraints. Thus, we report only
the results of the first model (see Figure 1).

Predation of the different stages of grape berry moth
and infestation levels were affected by both landscape
and management factors. Caterpillar predation decreased
with the increase in copper quantity used and synthetic
pesticides (Figure 2). Egg predation (2 periods) was nega-
tively influenced by the increasing mean patch size of
vineyards, that is, predation rates were higher in land-
scapes with smaller vineyards (Figure 2). Egg and pupae
predation rates in late July decreased with higher pesti-
cide use. The abundance of silk nests was negatively
influenced by the mean patch size of vineyards. The
number of perforations decreased with higher pesticide
use and the cover of ground vegetation. Finally, only the
pupae predation affected negatively the abundance of silk
nests (Figure 2).

Indirect effects of landscape factors or farming prac-
tices on pest damage were considered significant only if
all the previous effects were significant. However, no
significant indirect effects were observed through the
SEM. The correlation between the egg predation in early
June and late July and the correlation between egg predation
and pupae predation were greater than 0.4 and thus consid-
ered significant (rEggs-Eggs2 = 0.472 and rEggs-Pupae = 0.412,
respectively, Figure 3). The landscape was the main factor
explaining these two correlations (Figure 3).

DISCUSSION

Contrary to our expectations, grape damage was not
reduced by several measures of predation on the different
pest developmental stages, suggesting no complementar-
ity over time. Instead, grape moth density and predation
rates were directly affected by landscape heterogeneity
and farming practices. Predation rates on eggs were nega-
tively affected by increased average size of the vineyards
in the landscape, whereas no significant effects of other
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landscape metrics were sufficiently robust, suggesting
a higher contribution of landscape configuration rather
than landscape composition to pest suppression. How-
ever, almost all predation rates were negatively affected
by farming intensity, especially pesticide use which was
on average higher in conventional vineyards (higher TFI
values). Our results indicate that increasing landscape
heterogeneity might favor the natural control of grape
berry moth, but only under reduced pesticide use. While
synthetic pesticide use is effective in reducing pest
damage, it negatively impacts natural enemies’ popu-
lations, as observed in the reduced predation rates. This
creates a dependency on continued pesticide use to
control pests, which can compromise long-term sustain-
ability of pest management strategies. These trade-offs
highlight the need for integrated pest management
approaches that reduce pesticide use while promoting
biological control through landscape and farming prac-
tice diversification.

The combination of predation types did not
lead to higher biological pest control

Our results showed that the abundance of silk nests was
limited to some degree by pupae predation, whereas none
of the remaining predation types had an effect on pest
infestation or crop damage. This indicates that the pupae
stage could be the most relevant stage for the biological
control of grape moths and should be targeted by conser-
vation biological control strategies. Biological control at
the pupae stage has long been considered through para-
sitic wasps rather than by generalist predators. However,
while parasitism has been reported as a significant mech-
anism of biological control in some studies (Xuéreb &
Thiéry, 2006), rates can be highly variable depending on
environmental and biological conditions (Pérez Moreno
et al., 2000). In this study, we focused solely on predation
as a driver of biological control, and we acknowledge the
absence of parasitism data as a limitation that could

F I GURE 2 Structural equation model (SEM) showing significant effects and the corresponding standardized estimates. Arrows

represent the significant effects identified by the model, with the thickness of the arrow proportional to the magnitude of the standardized

estimate. Red arrows indicate negative relationships. Solid lines correspond to effects that are robust after permutation testing (outside the

95% CI), whereas dashed lines represent moderately robust effects (outside the 90% CI). The R 2 value represents the proportion of variance

explained by the model for the endogenous latent variable. Model fit indices for the SEM: RMSEA = 0.08 (p = 0.12) and CFI = 0.95. L1:

proportion of semi-natural habitats (500 m) and proportion of woody semi-natural habitats (500 m); L2: proportion of vineyards (500 m) and

proportion of organic vineyards (500 m); L3: proportion of vineyards (1 km); L4: proportion of semi-natural habitats (1 km); L5: mean patch

size of vineyards (500 m and 1 km). SNH, sem-i-natural habitats; MPS, mean patch size.
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explain part of the variability observed in our model.
In addition to predation during the vegetation period,
grape berry moth pupae may also be taken by generalist
predators from the autumn onward at the time of
overwintering (Rusch et al., 2017). However, although
immobile and vulnerable prey (Picchi et al., 2017), grape
berry moth pupae are protected through anti-predator
mechanisms, such as being deposited in vegetation or
buried in the soil (Lindstedt et al., 2019). In our study,
the use of sentinel prey, such as exposed pupae, may lead

to an overestimation of predation rates compared to natural
settings, as prey are more conspicuous and lack protective
mechanisms. This limitation is a common concern in
predation studies using sentinel prey (Boetzl, Konle,
et al., 2020; McHugh et al., 2020). Nonetheless, this
approach provides standardized and comparable measures
of the potential of pest regulation, which are essential for
assessing the relative contribution of predation across differ-
ent environmental conditions and developmental stages.
In addition, our initial hypothesis (H5) predicted that

F I GURE 3 Correlations between the different predation types. Predation types followed by the number 1 correspond to predation rates

measured during the first session in early June (spring), while those followed by the number 2 correspond to the predation rates measured

during the second session in late July (summer). “Cater” refers to predation on caterpillars using dummy caterpillars, which was measured

only in early June. Other predation types were measured in spring. (A) Total and explained correlation values between predation types 2 by

2. The blue dashed line corresponds to the threshold correlation value above which the correlation is considered significant for our dataset.

(B) Part of the correlations explained by the landscape and farming practices considered in the model.
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combining predation at different developmental stages
of L. botrana would result in a higher level of biological
pest control, ultimately reducing pest damage. However,
this combination implies the involvement of a diverse
community of natural enemies, which may also result
in intraguild interference, potentially counteracting the
expected complementarity (Letourneau et al., 2009;
Martin et al., 2013; Tylianakis & Romo, 2010). Then,
further analyses considering both predation and parasit-
ism using the detailed community for interaction net-
work approach would be necessary.

One of our main results is that the covariation
between different types of predation was positive for all
pairs of predation types, except between pupae predation
in summer and egg or caterpillar predation in spring.
This implies that fields supporting high rates of egg pre-
dation are also supporting high pupae predation rates
in the spring. Moreover, an increase in egg predation
in spring is also related to a higher egg predation in sum-
mer. This suggests that egg predation may be consistently
carried out across spring and summer, potentially due to
a stable taxonomic composition of predator communities,
or through changes in community composition, where cer-
tain species maintain either a stable numerical response
(changes in predator abundance with prey density) or a
stable functional response (consistent predation efficiency
at different prey densities) or that environmental condi-
tions that favor pest control are stable across time. Most of
the correlations between predation types are explained by
landscape metrics in our models, whereas the other non-
significant correlations are explained by farming practices.
This result shows the stability of predation potential at cer-
tain stages in relation to stable habitats of agricultural
landscapes (Perrot et al., 2023). This shows once again the
high stakes and potential offered by landscape management
(Vialatte et al., 2019, 2021). However, the dominant effects
of pest management suggest that landscape management for
conservation biological control must be integrated within an
overall agroecological approach (Deguine et al., 2023).

Landscape configuration and pesticide use
intensity drive pest damage and density
rather than top-down processes

One of our objectives was to assess the direction of the
relationships between predation rates and pest densities.
While the negative correlation with pupae predation indi-
cates that predation drives infestation, the absence of
more or stronger relationships suggests that pest and
predator dynamics are largely decoupled, likely through
intensive use of pesticides. This result supports the idea
of reducing pesticide use to increase predation potential

through beneficial management options for natural
enemies.

However, we observed direct effects of landscape con-
figuration metric and farming practices on pest damage
and predation rates, suggesting that both factors are cru-
cial to consider for biological pest control.

Our study illustrates that average vineyard size at the
landscape scale influences different predation types, that
is, egg predation in spring and potentially also in sum-
mer, whereas caterpillar and pupae predation were not
significantly affected by landscape metrics as expected.
These results suggest that different mechanisms are
at play, involving different predator communities. For
instance, pupae predation is likely driven by carabid
beetles (Carabidae), which are active soil-dwelling pred-
ators. Egg predation, on the other hand, involves gener-
alist predators such as earwigs (Forficula auricularia,
Forficulidae), bush crickets (Orthoptera: Tettigoniidae),
and ants (Formicidae), as observed by Reiff et al. (2021),
through nocturnal sentinel prey monitoring. Only
egg predation increased in landscapes with average
smaller vineyards, suggesting active predator communities
within fields and around. Several studies showed a biodi-
versity decrease with increasing mean field size (Clough
et al., 2020; Sirami et al., 2019). Indeed, the increase in
mean field size leads to a decrease in the density and the
diversity of field edges. The nature of these edges can be
very different, ranging from vineyard–vineyard edges to
permanent semi-natural vegetation including grassy strips,
hedgerows, and forest edges. These edges are less affected
by pesticide sprays, less intensively managed, and can
therefore be relatively stable habitats for different taxo-
nomic groups and provide additional and/or complemen-
tary resources (Dunning et al., 1992), which may encourage
predator diversity and movement (Hass et al., 2018). There-
fore, smaller fields increase edge density, resulting in a
higher potential for biodiversity through supplementation,
that is, greater resource availability across habitats; com-
plementation, that is, use of complementary resources for
different life stages; and spill-over processes, that is, move-
ment of species between habitats (Blitzer et al., 2012;
Dunning et al., 1992; Tscharntke et al., 2012). Also, field
margins have been identified to be important for both
common and rare species (Gabriel et al., 2006; Wuczy�nski
et al., 2014) depending on their degree of habitat speciali-
zation and mobility. Caterpillar predation is theoretically
more related to bird predation (Rusch et al., 2017),
which is assumed to be increased with the proximity
to semi-natural habitats and particularly woody semi-
natural habitats (Karp et al., 2018; Maas et al., 2015),
facilitating foraging movements from these habitats into
neighboring vineyards. In line with previous studies
in vineyards, it has been shown that foliage-gleaning
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insectivores are more abundant in landscapes with a
higher proportion of semi-natural habitats and that
diverse landscapes shelter a higher bird functional even-
ness and higher potential of avian pest control (Barbaro
et al., 2017). However, contrary to our expectations, we
did not observe a significant effect of such landscape
metrics on caterpillar predation.

According to Rusch et al. (2017), larval nest density,
that is, presence–absence of silk nests, was not affected
by landscape composition metrics. However, we showed
here that it decreased significantly with average vineyard
sizes. This result suggests that larger vineyard sizes may
dilute pest populations across a wider area, thereby
reducing local pest pressure. These findings are in partial
agreement with Rosenheim et al. (2022), who reported
that increasing field size does not consistently exacerbate
pest problems, highlighting the importance of system-
specific mechanisms. One of the main hypotheses explaining
such results is that in smaller vineyards, pest populations
might experience less dilution due to limited habitat avail-
ability, leading to higher observable densities. Additionally,
smaller vineyards might offer more favorable microclimatic
conditions or reduced predator pressure through competi-
tion between natural enemies (Martin et al., 2013), which
could further contribute to increased pest densities. Smaller
vineyard size may also favor secondary carnivores such as
wasps hunting along margins and reducing densities of
spiders (Pfister et al., 2015).

Summer damage, that is, the number of perforations
in grapes, potentially decreased with a higher proportion of
ground vegetation cover within vineyards. This result sug-
gests that at the local level, the ground vegetation cover
limits access to the host plant by diluting the host plant or
reducing vine vigor and resource quality (Rusch et al., 2017).
This local dilution effect may also vary between years
according to the mean pest population. Alternative mecha-
nisms, such as reduced pest dispersion or positive effects of
ground cover on natural enemies, could also explain these
patterns (Blaise et al., 2022; Gardarin et al., 2021).

While our results suggest that both top-down and
bottom-up processes are at play, we primarily assessed
bottom-up effects on L. botrana populations through met-
rics of damage (silk nests and perforations) as proxies for
larval densities, influenced by vegetation diversity and
farming practices. However, bottom-up effects could also
indirectly influence generalist predators via the availabil-
ity of alternative prey. In landscapes with higher vegeta-
tion diversity, the abundance of alternative prey might
enhance predator populations, potentially increasing pest
suppression. These dynamics underscore the need for
future studies to explore how prey resource availability
shapes predator activity and its cascading effect on pest
control (Deere et al., 2024). The prevalence of bottom-up or

top-down processes may also depend on the year, particu-
larly whether conditions are favorable for pest outbreaks
(Almdal & Costamagna, 2023). Our results imply that both
top-down and bottom-up processes are at play, especially
through landscape and farming management. This reaffirms
that both play a key role in biological pest control strategies.

One of our main outcomes of the study is that farm-
ing practices, especially synthetic pesticide use, directly
decreased not only perforations in the summer but also
the caterpillar predation rate and predation rates assessed
for the second period (eggs and pupae). It is now widely
known that pesticide use has negative effects on predator
communities and biological pest control (Daelemans
et al., 2023; Duflot et al., 2022; Rusch et al., 2010). Our
results also show that the use of copper, which is used in
both organic and conventional vineyards in our region,
had a negative effect on caterpillar predation. We hypothe-
size that a higher intensity of pesticide use negatively
affects functional communities such as generalist predator
communities (Rusch et al., 2014) and also potential alter-
native prey populations, resulting in a disruption of the
food web (Chailleux et al., 2014; Koss & Snyder, 2005).
Then, while our results demonstrate the potential effec-
tiveness of synthetic pesticides in reducing pest infestation,
they also highlight the unintended consequences on func-
tional predator communities. These practices likely disrupt
the food web by negatively affecting both natural enemies
and alternative prey, as previously suggested. Therefore,
reducing dependence on synthetic pesticides is essential
for maintaining long-term ecosystem services, such as nat-
ural biological control.

Finally, many studies have now shown that farming
practices may counteract landscape effects (Ricci et al., 2019;
Tscharntke et al., 2016). In our study, the model with the cor-
relations between landscape metrics and farming practices
was not kept, suggesting that these two groups of variables
were quite independent. More precisely, the decrease of
chemical inputs in organic vineyards is quite heterogeneous
and not necessarily less intensive (Etienne et al., 2023). Then,
a landscape with a high proportion of organic farming does
not imply less-intensive pest management. The number of
tillage operations, historical contaminations (copper contam-
ination in soil for instance), or the number of years since
organic conversion are other variables that would be interest-
ing but difficult to characterize at field and landscape levels.
Ultimately, our results suggest that intensive farming prac-
tices negatively affect both pest moths and their enemies.

CONCLUSIONS

Nature-based solutions are increasingly applied in agri-
cultural systems to promote biodiversity and pest control
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services. Our study underlines the potential of landscape
effects to enhance predation across multiple pest deve-
lopmental stages of L. botrana. However, the observed
decoupling of predation rates from pest infestation sug-
gests that negative effects of farming practices on preda-
tion rates may have outweighed the potential benefits of
landscape configurational heterogeneity in promoting
effective natural biological control. Predation pressure at
the pupae stage appeared to be most relevant for pest sup-
pression, rather than complementarity between predation
rates at different life stages. Links between predation rates
and pest infestation appear tenuous but point in the direc-
tion of predation driving infestation and not as a response
to pest abundance.

Further studies should aim to refine the underlying
mechanisms through a functional approach by linking
the predator and parasitoid communities involved,
highlighting their potential complementarity in biolog-
ical control. This confirms the need for multi-scale and
multi-taxa functional approaches. Finally, because pest
densities and damage do not seem to respond in the
same way in spring and summer, it seems necessary to
investigate the temporal dynamics of both natural ene-
mies (including predators and parasitoids) and prey in
vineyard landscapes.
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