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Abstract

While climate change and pesticide use expose insect pests to multiple stressors, their combined effects remain poorly studied.
Rising temperatures can accelerate insect life cycles and alter reproductive behaviours, while pesticides can impair physi-
ological functions, reproduction, and survival. Understanding how global warming and pesticide exposure interact is crucial
for predicting pest population dynamics and their impact on agroecosystems. As mating behaviour, including mate choice,
plays a fundamental role in population growth, studying how these combined environmental stressors influence reproduction
is critical. This study investigated how Bordeaux mixture fungicide affects the development, mating behaviour of Lobesia
botrana under current (2002-2021) and projected (2081-2100) climatic scenarios. Larvae were reared with two fungicide
concentrations and under two climatic conditions. Larval mortality, development time, and adult longevity were monitored.
Mating behaviour was assessed using no-choice and choice experiments, measuring pre-mating latency, mating success and
duration, fecundity and fertility. Key life parameters (R, T, Dy, rm, and A) were estimated to investigate population dynam-
ics. Results show that fungicide exposure negatively affected the development and survival of larvae until emergence, but
these effects were modulated by climatic conditions. While Bordeaux mixture exposure prolonged development time, future
climatic conditions shortened development time compared to current conditions. Choice experiments revealed that under
future conditions, moths preferred unexposed partners, whereas no preference was observed under current conditions. These
findings emphasize the importance of integrating climate change effects into pesticide risk assessments, as their interactions
may have unexpected consequences for pest populations and sustainable management strategies in agroecosystems.

Keywords Climate change - Fungicide - Pest management - Lobesia botrana - Mate choice - Reproductive behaviour -
Population dynamics

Introduction

Climate change and pesticide use are among the most signif-
icant drivers impacting the sustainability of agroecosystems
Communicated by Antonio Biondi. (Fuhrer 2003; Agovino et al. 2019; Dhuldhaj et al. 2023;
Subedi et al. 2023). Pesticides are extensively used in pest
management strategies to protect crops from plant pathogens
and herbivorous insects (Popp et al. 2013). However, pesti-
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temperature and pesticide exposure may lead to synergis-
tic or antagonistic effects on insect physiology, thereby
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influencing pest population growth (Boina et al. 2009;
Ricupero et al. 2020; Iltis et al. 2022; Perrin et al. 2022;
Kenna et al. 2023). Climate change alters insect sensitivity
to pesticides, as temperature influences key physiological
processes such as the absorption, distribution, metabolism,
and excretion of pesticides (Holmstrup et al. 2010; Hooper
et al. 2013). Conversely, pesticide exposure increases insect
sensitivity to climate-related stressors, such as elevated tem-
peratures and extreme weather events (Hooper et al. 2013).
Consequently, the interplay between climate change and pes-
ticide use may influence insect thermal tolerance, increase
insect sensitivity to pesticide toxicity, or potentially enhance
the development of pesticide resistance (Matzrafi 2018). As
a result, climate change and pesticide applications can sig-
nificantly alter pest populations and affect agroecosystems’
equilibrium (Hooper et al. 2013; Delnat et al. 2019).
Examining life-history traits (e.g., mortality rates, devel-
opment times, body conditions), and behaviours (e.g.,
dispersion, competition, reproduction) provides a founda-
tional framework for predicting changes in pest population
dynamics (Sutherland 1996; Nylin 2001; Smallegange and
Ens 2018). Reproductive behaviours, encompassing pre-
copulatory (e.g., mate recognition, courtship displays, and
mate choice) (Bonduriansky 2001; Thomas 2011; Borrero-
Echeverry et al. 2018; Baker et al. 2019; Mitoyen et al. 2019)
and copulatory (e.g., body positioning, sperm transfer, and
nutrient delivery such as nuptial gifts) behaviours, are par-
ticularly important as they directly influence mating success
and offspring production (Vahed 1998; Milonas et al. 2011;
Muller et al. 2015, 2016¢; Friesen et al. 2016; Tong et al.
2017; Henneken and Jones 2017; Camacho-Garcia et al.
2018). Among these reproductive behaviours, mate selection
is of fundamental importance, as it not only directly impacts
offspring fitness but also influences the genetic diversity of
a population, which affects the survival and adaptation of
future generations (Pilakouta and Alund 2021). However,
environmental stressors such as pesticide exposure and tem-
perature can disrupt these reproductive processes. Pesticide
exposure can impair key reproductive behaviours, such
as mate recognition or courtship displays, thereby reduc-
ing reproductive performance (Miiller et al. 2017; Tappert
et al. 2017; Conrad et al. 2017; Boff et al. 2022). Similarly,
many studies reported an influence of temperature on sexual
selection, by affecting a wide range of traits such as court-
ship intensity, mate choice, and reproductive success (Con-
rad et al. 2017; Macchiano et al. 2019; Garcia-Roa et al.
2020; Enos and Kozak 2021; Pilakouta and Baillet 2022).
Yet, studies focused on the combined effects of temperature
and pesticide exposure on reproductive behaviours remain
scarce. Addressing this knowledge gap is crucial, as syner-
gistic or antagonistic interactions between these stressors
could significantly impact insect pests’ reproductive perfor-
mance and, consequently, disrupt pest population dynamics.
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Moth species (e.g., Tortricidae family) are significant
agricultural pests and serve as excellent models for study-
ing reproductive behaviours (Brown 2021). These insects
rely on various cues to assess partner quality, and their
reproductive success is driven by a wide range of factors,
including energy reserves accumulated during the larval
stages, environmental conditions, the variety of host plant,
and morphological traits that reflect individual quality (e.g.,
body size) (Roelofs and Brown 1982; Jiménez-Perez and
Wang 2004; Muller et al. 2016c¢; Iltis et al. 2020). Under-
standing their reproductive biology is therefore critical for
developing effective pest control strategies. Among these
pests, the European grapevine moth Lobesia botrana is one
of the most economically damaging species in viticulture
(Benelli et al. 2023a, b; Thiéry et al. 2018). Larvae cause
significant damage to grape production, and their recent
spread to higher latitudes previously unaffected is a grow-
ing concern (Reineke and Thiéry 2016, 2004; Gutierrez
et al. 2018). Reproductive behaviours of L. botrana include
pre-copulatory actions, such as pheromone production by
females, which allows males to detect and locate potential
mates over long distances (Roelofs and Cardé 1973). In addi-
tion to pheromone-based signalling, L. botrana may also rely
on visual and/or olfactory cues for mate selection (Muller
et al. 2016a, c). Given its strong reliance on chemical signal-
ling and other morphological cues, L. botrana is a valuable
model for studying how external stressors modulate insect
mating systems. Environmental pressures such as elevated
temperatures and routine pesticide application can alter
courtship behaviour, potentially compromising reproduc-
tive outcomes. Understanding how such factors influence the
reproductive behaviours of L. botrana is therefore essential
for improving pest control strategies and predicting popula-
tion responses under changing environmental conditions.

Viticulture is an important socio-economical sector that
faces the dual pressure of climate change and extensive
pesticide applications (Patinha et al. 2018; van Leeuwen
et al. 2024). Copper-based fungicides, such as the Bor-
deaux mixture, are widely used to manage fungal patho-
gens, like downy mildew Plasmadora viticola and powdery
mildew Eryphise necator, which can significantly reduce
grape yields (Gessler et al. 2011; Pertot et al. 2017). These
fungicides are particularly prevalent in vineyards due to
their authorization for use in both conventional and organic
farming systems (European Commission 2018; ANSES
2022). While copper-based fungicides are used against fun-
gal pathogens, numerous studies have reported unintended
effects on non-target organisms in viticultural agroecosys-
tems, including pests and their natural enemies (Penning-
ton et al. 2018; Vogelweith and Thiéry 2018; Garinie et al.
2024; Nusillard et al. 2024b). These non-target effects are
further influenced by temperature changes (Iltis et al. 2022;
Nusillard et al. 2024a). For instance, global warming may
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increase the tolerance of L. botrana larvae to Bordeaux mix-
ture (Iltis et al. 2022) and negatively impact natural enemies
(Nusillard et al. 2024a), potentially altering management.
Such interactions can compromise the success of biologi-
cal control strategies and exacerbate L. botrana population
growth under future climatic conditions (Pennington et al.
2018). In addition, Iltis et al. (2020) reported that under
future climatic conditions, female L. botrana exhibited
reduced mating success compared to current conditions.
This finding highlights the need for a better understanding
of how climate change impacts reproductive behaviours.
However, despite their importance in shaping pest popula-
tion dynamics trends, the combined effects of climate change
and copper-based fungicides on the reproductive behav-
iours of L. botrana remain poorly understood. Investigating
these interactions is essential to predict future pest popu-
lation trends and to develop sustainable pest management
strategies in viticultural agroecosystems facing a changing
climate.

In this context, we investigated the effects of Bordeaux
mixture on the reproductive behaviour, mate selection, and
life-history traits of L. botrana, and examined how these
effects are modulated by climate change (i.e., elevated tem-
peratures and increased drought conditions). Specifically,
the present study aimed to (i) evaluate the effects of fun-
gicide exposure on development, including survival, time
to emergence, pupal mass, and adult longevity; (ii) inves-
tigate the influence of projected future climatic conditions
(2081-2100) on these developmental traits; (iii) assess
reproductive behaviour and mate selection under different
treatment conditions and measure the impacts of fungicide
exposure on female fecundity and fertility; and (iv) estimate
potential shifts in population dynamics by calculating key
life table parameters.

Materials and methods
Insect rearing and fungicide exposure

Moths originated from a laboratory-reared population of dia-
pause-free L. botrana maintained at the National Research
Institute for Agriculture, Food and the Environment (INRAe,
Villenave d’Ornon, France). Eggs were collected on waxed
paper strips suspended inside moth cages. Strips were then
transferred into plastic containers and placed under mois-
tened paper towels, rehydrated daily until egg hatching.
Rearing was conducted under controlled laboratory condi-
tions, with a temperature of 22+ 1 °C, a relative humidity of
60+ 10%, and a 16:8 h light:dark photoperiod. Upon hatch-
ing, neonate larvae (< 12h old) were individually collected
and placed into 2 mL Eppendorf® tubes containing 1.5 mL
of artificial diet. The diet composition per litre included:

1000 mL of water, 15 g of agar, 86.6 g of corn flour, 41.3 g
of wheatgerm, 45.5 g of beer yeast, 6 g of ascorbic acid, 3.4
g of mineral salt (Wesson salt mixture), 128 mg of pyrimeth-
anil, 2.7 g of benzoic acid, 2.8 g of methyl 4-hydroxyben-
zoate, and 5 mL of 95% ethanol (adapted from Thiéry and
Moreau 2005). For our experiments, Bordeaux mixture—
composed of copper sulphate (CuSOs, the active ingredient)
and lime (CaO)—was employed as it is widely used in vine-
yards. The copper sulphate concentration used in this study
was chosen to reflect the maximum levels typically observed
in vineyard environments (Lai et al. 2010; Mackie et al.
2012; Hummes et al. 2019). In natural conditions, larvae
may consume berries that have been directly sprayed with
Bordeaux mixture or that have accumulated copper through
soil leaching and root uptake by the vine after repeated
applications and rainfalls (Mackie et al. 2012). Therefore,
to simulate realistic copper exposure in viticultural envi-
ronments, larvae in the fungicide treatment group were fed
a diet supplemented with 10 mL of Bordeaux mixture (BB
Caffaro WG, containing 20% copper sulphates), diluted in
distilled water to obtain the desired copper sulphate concen-
tration of 100 mg.kg ! (measured as mg of copper sulphates
per kg of artificial diet). Finally, control larvae received a
diet supplemented with 10 mL of distilled water, with no
added copper ([Cu]=0 mg.kg ™).

Climatic scenarios

Larvae, both exposed and unexposed to fungicide, were
placed into climate-controlled chambers (Memmert
HPP260eco, Schwabach, Germany) programmed to simu-
late current and future summer climatic conditions (i.e.,
temperature and relative humidity) in Burgundy (Eastern
France, Longvic-Dijon weather station, 47.27°N; 5.09°E;
altitude =219 m; Fig. 1). The selected period, from July
15th to August 15th, aligns with the peak development of
L. botrana due to warm temperatures and coincides with a
critical stage in grape berry development, highlighting the
increased need for crop protection (Benelli et al. 2023a, b).
This period also overlaps with the application window for
Bordeaux mixture, which generally extends from early May
to late July. For the current climatic scenario, temperatures
were set using average hourly values over a 30-day period,
derived from 20 years of historical data (2002-2021). The
future climate scenario was designed to replicate projected
summer conditions in Burgundy, at the end of the twenty-
first century (2081-2100), based on the SSP5-8.5 scenario,
which represents the worst-case greenhouse gas emission
pathway (Calvin et al. 2023). These projections were gen-
erated using the average output from 18 CMIP6 General
Circulation Models (GCMs) and further refined with a quan-
tile mapping method to downscale and correct the model
outputs, employing data from the Dijon weather station
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Fig. 1 Experimental projected and current climatic conditions. The
blue curve represents the current daily temperature fluctuations,
while the red curve shows projected future temperatures based on the
average of 18 climatic models (individual model outputs are shown
as fine orange lines). The relative humidity (%) programmed in each

(see method in Zito 2021). Temperature was programmed
to follow natural daily fluctuations with gradual ramp-up and
ramp-down transitions and was maintained with a precision
of +0.1 °C (Fig. 1). To prevent condensation of the nutrient
medium, relative humidity was kept constant over the 24-h
cycle at the daily average value for each climate scenario
(Fig. 1). Relative humidity was controlled within + 5%, and
both temperature and humidity were continuously moni-
tored throughout the experiment. Lighting followed a 16:8
h light:dark photoperiod, with gradual transitions to simulate
sunrise and sunset. Light intensity increased to 33% and 66%
during the first hours of illumination and decreased in the
same pattern during the final hours. Lighting was provided
by a combination of cool (6500 K) and warm (2700 K) white
LEDs, reaching a maximum of 2000 Ix (Fig. 1). These light-
ing conditions align with standard practices commonly used
in L. botrana rearing (Roditakis and Karandinos 2001).
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s Future climatic scenario (2081-2100)

climatic chamber is displayed in the top left, and the luminosity (%)
in the top right, with shades of yellow indicating increasing light lev-
els. Lighting conditions consisted of a combined system of cool white
(6500 K) and warm white (2700 K) illumination. At full intensity
(100%), the light output was measured at 2000 1x

Experimental design

Larvae were subjected to two climatic conditions: current
(2002-2021) and future (2081-2100) conditions (Fig. 2).
Within each climatic regime, larvae were fed either a diet
supplemented with Bordeaux mixture (100 mg.kg ! copper,
“exposed”) or an untreated diet (0 mg.kg"' copper, “unex-
posed”). Development was monitored from egg hatching
until adult emergence. For reproduction experiments, adult
moths were divided into two experimental groups: (i) no-
choice mating and (ii) choice mating. In the choice experi-
ments, two combinations were tested for each climatic condi-
tion: (i) an unexposed male (focal individual) was presented
with both an unexposed female and an exposed female, and
(i1) an unexposed female (focal individual) was presented
with both an unexposed male and an exposed male. After
each choice experiment, individuals were sacrificed and not
used in any further experiments. In the no-choice experi-
ments, four pairings were conducted in current and future
climatic conditions: (i) unexposed female X unexposed
male, (ii) unexposed female X exposed male, (iii) exposed
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Fig.2 Overview of the experimental approach to test the influence
of temperature and fungicide exposure on mate selection and the
reproductive behaviour of L. botrana. In no-choice and choice experi-

female X unexposed male, and (iv) exposed female X exposed
male. After the no-choice experiments, individuals were pre-
served to assess reproductive performance, including fecun-
dity, fertility, and longevity.

Pest development response to Bordeaux mixture
under different climatic scenarios

A total of 5113 neonate larvae were randomly assigned to
one of four experimental conditions: current (n=1561 for
0 mg.kg !, n=1342 for 100 mg.kg ") and future (n=1036
for 0 mg.kg!, n=1174 for 100 mg.kg!) climate regime.
Larvae were monitored daily until pupation. Each pupa was
weighed, individually placed into glass tubes, and checked
daily for adult emergence. Upon emergence, moths were
sexed by inspecting the ventral tips of the abdomen. Devel-
opmental variables were measured, including (i) mortality
rate (proportion of larvae and pupae that died relative to the
total number of larvae initially placed in Eppendorf® tubes),
(i1) pupal mass (mg), (iii) development time (days from egg
hatching to adult emergence), and (iv) longevity (days from
adult emergence to death).

Pest reproduction response to Bordeaux mixture
under different climatic scenarios

General conditions

Mating experiments were conducted under controlled tem-
perature and humidity conditions specific to each climatic

ments, females are represented in pink and males in green. The index
next to the moths indicates the concentration of Bordeaux mixture
they developed on (0: unexposed, 100: exposed)

regime, using red light (100 Ix) to simulate low-light con-
ditions (dusk-like conditions). For each climatic regime,
the temperature was set based on the average temperature
observed over a 4-h mating period (8 a.m. to 12 a.m.). For
the current climate scenario, this temperature was main-
tained at 20+ 0.5 °C with a relative humidity (RH) of
60 + 5%, while in the future climatic scenario, it was set
to 26.5 +0.5°C with the same RH of 60 +5%. All pairings
involved virgin individuals: females aged 1+ 1 days and
males aged 2 + 1 days. Each experiment lasted up to 3 h or
until mating occurred, as the likelihood of mating drops to
nearly zero beyond this period (Muller et al. 2016b).

Experiment 1: no-choice mating

Four experimental combinations were tested: (i) FO x MO,
unexposed female with unexposed male (current: n==61,
future: n=43), (ii) FOXM100, unexposed female with
exposed male (current: n =56, future: n=287), (iii)
F100 x MO, exposed female with unexposed male (cur-
rent: n=>53, future: n="76), and (iv) F100 x M 100, exposed
female with exposed male (current: n =57, future: n=_86).
In each experiment, a female was placed into a glass tube for
a 5-min acclimatization period before introducing the male.
Once introduced, male—female interactions between males
and females were recorded for 3 h using a Moticam 1080
camera and Motic Images Plus 3.0 software. Video foot-
age was analysed to estimate: (i) mating success, considered
successful if the pair remained coupled for more than one
minute, indicating successful intromission (Muller 2016),
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(ii) pre-mating latency, time elapsed between first contact
and mating initiation, and (iii) mating duration, time from
the start of mating until separation. Following mating, the
female was retained in the mating tube to lay eggs on the
inner surface of the tube, while the male was moved to a
separate tube. Both were monitored daily to assess longev-
ity (days from adult emergence to death). Eggs were incu-
bated under the same developmental rearing conditions for
at least ten days (during which the female died, and the eggs
hatched), after which the following reproductive metrics
were assessed: (i) fecundity (total number of eggs laid per
female), and (ii) fertility (proportion of eggs that success-
fully hatched).

Experiment 2: choice mating

To investigate partner selection by a focal individual when in
contact with two potential partners (one fungicide-exposed
and one unexposed), triad experiments were conducted
under two setups: (i) an unexposed female (FO) with two
male partners, one fungicide-exposed (M100) and one unex-
posed (MO) (current n =42, future: n=46), (ii) an unexposed
male (MO) with two female partners, one fungicide-exposed
(F100) and one unexposed (FO) (current n=62, future:
n=60). To differentiate between exposed and unexposed
individuals, each partner was randomly marked with either
yellow or red acrylic paint the day before testing. These
colours were selected to minimize interference with the
moths’ colour perception (Crook et al. 2022). Moths were
anesthetized on ice to immobilize them for marking with a
fine brush applied to the base of the right wing. On the test-
ing day, the focal individual was placed into a transparent
plastic box (17 % 10.5%9 cm) for a 5-min acclimatization
period, after which two partners were introduced simultane-
ously, positioned equidistantly from the focal moth. Obser-
vations were conducted visually for up to 3 h. If a mating
occurred, the non-selected partner was removed to avoid
intrasexual competition, with its identity confirmed by the
colour marking. For each experiment, the following metrics
were marked down: (i) mating success, defined as successful
if the pair remained coupled for more than one minute, (ii)
mate choice, indicating whether the focal individual mated
with a fungicide-exposed or unexposed partner, (iii) pre-
mating latency, and (iv) mating duration. To prevent cross-
contamination, the plastic boxes were cleaned with acetone
after each test.

Pest population dynamics responding to Bordeaux
mixture under different climatic scenarios

Following the procedure described by Maia et al. (2000), key
life table parameters (i.e., Ry, T, Dt, r,, and ) were estimated
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using mortality data, developmental variables (i.e., develop-
ment times, sex ratio, longevity) and reproductive outcomes
(i.e., fecundity and fertility) from the development and the
no-choice experiments. The following life table parameters
were estimated:

e Net reproductive rate (R;), which represents the mean
net contribution of a female to the next generation, is
expressed as the total number of female offspring pro-
duced per female during the entire oviposition period.

e Mean generation time (T), which indicates the mean time
(in days) between the birth of individuals (neonate emer-
gence) in one generation and the birth of individuals at
the same stage in the subsequent generation.

e Doubling time (Dt), which refers to the time (in days)
required for doubling the initial population.

¢ Intrinsic rate of increase (r,,), which is derived from the
exponential growth population potential, assuming a sta-
ble age distribution.

¢ Finite rate of increase (A), which is a multiplication factor
of the original population at each time period. The deci-
mal portion of A reflects the daily growth rate, expressed
as a percentage.

Using the jackknife procedure, values of R, T, Dt, r,,, and
A were estimated, enabling variance calculations for each
parameter (Maia et al. 2000). These values were subse-
quently analysed using a Generalized Linear Model (GzLM)
to compare differences between fungicide exposure combi-
nations and climatic conditions, with an appropriate family
distribution fitted to ensure accurate statistical modelling.

Statistical analyses

Datasets were analysed using Generalized Linear Models
(GzLMs) to evaluate the effects of Bordeaux mixture expo-
sure, climate scenarios, and their interaction on the studied
response variables. Pupal mass was included as a covariate
in all GzLMs, based on a priori hypothesis that individual
and sexual partner mass could influence development (Mul-
ler et al. 2015, 2016¢; Iltis et al. 2022; Garinie et al. 2024).
For binomial data (e.g., mortality and mating success),
GzLMs with a binomial distribution were applied to assess
the effects and interaction of fungicide exposure and climate
scenario. To ensure optimal models fit, different error dis-
tribution families (e.g., Gaussian, Poisson, quasi-Poisson,
Gamma and negative binomial) were tested and applied as
appropriate to model the error structure of each response
variable, including population dynamics parameters (R, T,
I'm, A, and Dy). GZLM models were followed by ANOVA
using a Chi-square test for the Poisson family, an F-test for
the quasi-Poisson family, and a likelihood ratio (LR) test for
the negative binomial family to assess model significance.
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When significant effects were detected, post-hoc tests were
performed using the emmeans package (version 1.8.1.1)
(Searle et al. 1980) to identify which specific conditions (i.e.,
fungicide exposure and climate scenario) significantly dif-
fered, and p-values were adjusted using the Tukey method.
For the choice mating experiments, exact binomial tests
were employed to assess whether observed choice propor-
tions deviated significantly from 50%, indicating a prefer-
ence beyond random choice. GzLMs were conducted using
the MASS package (version 7.3.58.2) (Venables and Ripley
2002). All statistical analyses were performed using the R
software (4.3.2, R Core Team 2023).

Results

Pest development response to Bordeaux mixture
under two climatic scenarios

Larval and pupal mortality were significantly influenced
by the climatic regime and Bordeaux mixture expo-
sure, with a significant interaction between these factors
(Fig. 3a; GzLM, binomial distribution, effect of Bordeaux
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FOxM100, F100xMO0, and F100xM100) in no-choice mating
experiments under current (blue) and future (red) climatic scenarios
on: a mating success (%) (mean+SD), b pre-mating latency (min),
and ¢ mating duration (min). Pairwise exposure combinations are rep-
resented on the x-axis as Female (F) x Male (M), where 100 indicates
exposure to Bordeaux mixture and O indicates no exposure. Boxplots
denote the first and third quartiles of the relative exposures, with

pupal mass (Table S1; regression coefficient of females:
B=—0.013, p=0.002; and males: p= —0.018, p=0.004).
However, while male moths with greater longevity also
had a significantly higher pupal mass, this effect was not
observed in females (Table S1; $=0.014, p=0.011).

Pest reproduction response to Bordeaux mixture
under two climatic scenarios

No-choice experiments: mating success and behaviours

In no-choice experiments, the mating success of moths was
significantly lower under future climatic conditions com-
pared to current climatic conditions (Fig. 4a, Table S2).
Under the current climate, mating success averaged 90%
and remained consistent across all four exposure combi-
nations. However, under future climatic conditions, mat-
ing success averaged 77% in control pairs (FOx MO) and
decreased when one of the partners was exposed to the
fungicide (Fig. 4a). The lowest mating success (45%) was
observed in pairs where only the male was exposed to the
Bordeaux mixture (FOx M100). Mating success under future
climatic conditions was moderately reduced when only the
female was exposed (F100 X MO0) or when both partners were
exposed (F100x M100), averaging 66% and 63% (Fig. 4a).
Mating success was also significantly influenced by female
mass; heavier females exhibited lower mating success rates
(Table S2, p= —0.215, p<0.001).

Pre-mating latency was significantly affected by climatic
conditions and fungicide exposure (Table S2). Under future
climatic conditions, pre-mating latency was significantly
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uppercase red letters indicate significant differences between pair-
wise exposure combinations under current and future climatic sce-
narios, respectively (p <0.05, post-hoc test). P-values (p) above the
bars denote significant differences between the two climatic regimes
for each pairwise combination, and n.s. indicates non-significant dif-
ferences. Gray numbers adjacent to points or boxes represent sample
sizes

longer for unexposed females compared to unexposed
females for current climatic conditions (Fig. 4b, Table S2).
Under current climatic conditions, pre-mating latency was
significantly extended when both partners were exposed to
Bordeaux mixture (F100 x M100) (Fig. 4b, Table S2). In
contrast, under future climate conditions, fungicide expo-
sure had no significant effect on pre-mating latency (Fig. 4b,
Table S2). Finally, mating duration was significantly reduced
under future climatic conditions, compared to current con-
ditions, but fungicide exposure had no significant effect
regardless of the climatic scenario (Fig. 4c, Table S2).

No-choice experiments: reproductive performance

Moths reared under future climatic conditions laid signifi-
cantly fewer eggs (—28%) compared to those reared under
current conditions (Fig. 5a, Table S2). While fungicide
exposure significantly reduced overall female fecundity
(Table S2), this effect was not statistically significant in
post-hoc tests. Female fecundity was significantly influ-
enced by body weight, with heavier females laying more
eggs (Table S2, f=0.075, p<0.001). Female fertility was
also significantly reduced under the future climatic condi-
tions, decreasing by 39% compared to current conditions. A
large variance in female fertility was measured under future
conditions (Fig. 5b). However, Bordeaux mixture exposure
had no significant effect on fertility (Fig. 5b, Table S2).
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Choice experiments: mating success and behaviours

In choice mating experiments, when focal individuals were
presented simultaneously with two potential partners, one
exposed to the Bordeaux mixture and one unexposed, cli-
matic condition significantly influenced mating outcomes
(Table S3). Under current climatic conditions, no significant
difference in mate choice was observed between unexposed
and fungicide-exposed partners, regardless of whether the
focal individual was male or female (Fig. 6). However, under
future climatic conditions, focal individuals mated more
frequently with unexposed partners than with fungicide-
exposed partners (Fig. 6). The no-choice rate (instances
where no mating occurred during the triad test) was signifi-
cantly higher under future climatic conditions than under
current conditions (Figure Sla, Table S3). Under current
conditions, the no mating rate was low for female focal indi-
viduals (2%) but substantially higher for males (34%). Under
future conditions, the no mating rate increased significantly
to 44% for females and 65% for males (Fig. 6, Figure S1a).
Pre-mating latency was significantly longer for female focal
individuals under future conditions compared to female pre-
mating latency under current conditions, while pre-mating
latency for males remained unaffected by climatic scenarios
(Figure S1b, Table S3). Additionally, mating duration was
significantly shorter under future climatic conditions com-
pared to current conditions, with no significant difference
between male and female focal individuals (Figure Slc,
Table S3).

Ro

Climatic
scenario

Pest population dynamics responding to Bordeaux
mixture under two climatic scenarios

Under current and future climatic conditions, exposure
of both partners to Bordeaux mixture, compared to unex-
posed partners, significantly reduced the net reproductive
rate (Ry) (GzLLM quasi-Poisson distribution, F; 544 =24.061,
p<0.001), the intrinsic rate of increase (r,,,) (GzLM Gamma
distribution, X23,252= 3.065, p<0.001), and the finite rate
of increase (A) (GzLM Gamma distribution, X23,252 =0.013,
p <0.001), while significantly increasing the mean gen-
eration time (T) (GzLM quasi-Poisson distribution,
X23,252: 19.982, p<0.001) (Fig. 7). In addition, exposure
to Bordeaux mixture led to a significant increase in dou-
bling time (Dt) under both climatic conditions, compared
to unexposed partners (GzLM quasi-Poisson distribution,
X23,252 =29.430, p <0.001) (Fig. 7).

For the same fungicide exposure combinations between
partners, comparisons between climatic conditions showed
that the net reproductive rate (R,) was significantly lower
under future climatic conditions, with an average reduc-
tion of 55% compared to current conditions (GzLM quasi-
Poisson distribution, F; ,4; =175.706, p <0.001) (Fig. 7).
Additionally, the mean generation time (T) was signifi-
cantly shorter under future climatic conditions, with an
average reduction of 27% (GzLM quasi-Poisson distribution,
X21,255=221-24O’ p<0.001) (Fig. 7). While a significant
overall difference in doubling time (Dt) was found between
the two climatic conditions (GzLM quasi-Poisson distribu-
tion, X21,255 =7.021, p=0.039), pairwise comparisons did
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not reveal significant differences between climatic condi-
tions within each treatment (Fig. 7). In contrast, no signifi-
cant differences were found in the intrinsic rate of increase
(r,,) (GzLM Gamma distribution, X21,255 =0.133, p=0.109),
or the finite rate of increase (A) (GzLM Gamma distribu-
tion, X21,255 =0.001, p=0.080) between climatic conditions
(Fig. 7).

Discussion

In this study, we investigated the effects of the widely used
Bordeaux mixture fungicide on mate selection and reproduc-
tive behaviour of the moth pest L. botrana under both current
and projected end-of-century climatic scenarios. Our results
showed that fungicide exposure influenced mate choice,
modulated by climatic conditions. Under future climatic
conditions, moths mated more frequently with unexposed
partners than with fungicide-exposed partners, whereas this
preference was not observed under current climatic condi-
tions. Developmental experiments revealed that Bordeaux
mixture exposure prolonged the development time, while
elevated temperatures accelerated it. Fungicide exposure
also resulted in higher mortality. However, the multi-stress
effects of temperature and fungicide exposure interacted
under future conditions, mitigating the fungicide’s lethal
impact. Finally, the estimation of life parameters provided
insights into potential shifts in L. botrana population dynam-
ics under a future climate scenario with fungicide exposure.
These findings highlight the complex interplay between pes-
ticide exposure and climate change, emphasizing the need to
consider both factors when predicting pest population trajec-
tories and designing sustainable pest management strategies
in a changing climate.

Mechanisms of “red flag” detection

Choice experiments revealed that under future climatic con-
ditions, focal individuals (males and females) mated more
frequently with unexposed partners than with fungicide-
exposed ones. Additionally, a notable percentage of no-
choice events—instances where no mating occurred during
the test—arose, with 44% of focal females and 65% of focal
males failing to mate. No-choice experiments further sup-
ported this finding, showing a decline in mating success
under future climatic conditions, particularly when fungi-
cide-exposed females were paired with unexposed males.
These results indicate that mating behaviour is significantly
disrupted when one partner has been exposed to Bordeaux
mixture under future climatic conditions.

The mate selection towards an unexposed partner sug-
gests that fungicide exposure alters the quality of mate selec-
tion cues under future climatic conditions. This implies that

fungicide-exposed individuals act as “red flags”, defined
here as a warning cue indicating lower mate suitability.
Indeed, mate choice in insects is influenced by several
modalities, including visual, olfactory, and physical cues,
which can interact synergistically (Bonduriansky 2001).
Temperature is a well-known modulator of sexual commu-
nication in insects, particularly in species that use acoustic
and vibratory signals. For example, temperature-coupling
phenomenon whereby both male signal production and
female preferences shift together in response to temperature
changes has been observed in crickets and the acoustic moth
Achroia grisella (Pires and Hoy 1992; Greenfield and Med-
lock 2007). This coordinated adaptation allows individuals
to maintain effective communication despite environmental
fluctuations. In contrast, other species such as the solitary
bee Osmia bicornis and the treehopper Enchenopa binotata
show no such coupling (Conrad et al. 2017; Jocson et al.
2019). Instead, elevated temperatures amplify differences in
male signal quality, thereby enhancing female discrimina-
tion. In these systems, only males capable of maintaining
robust, attractive signals in warm conditions are consistently
accepted, while less adapted males are more likely to be
rejected. Temperature can also affect chemical communica-
tion by altering the production and perception of volatile
compounds, disrupting signal reliability (Linn et al. 1988;
Woodrow et al. 2000; Conrad et al. 2017). Although insects
use different temperature-sensitive mechanisms to select
mates, the impact of warming on sexual communication
is likely to differ between species (Brandt et al. 2018). In
L. botrana, olfactory cues play a key role in mate recogni-
tion and attraction, as females release pheromones to enable
males to locate them (Witzgall et al. 2005). These volatile
compounds facilitate mate recognition and favour success-
ful courtship (Johansson and Jones 2007). Previous studies
have highlighted the role of CHCs as a signal of individ-
ual identity and quality during close-range courtship, and
as “honest signals”—reliable indicators of an individual’s
fitness or genetic quality—for mate evaluation (Johansson
and Jones 2007; Ingleby 2015). We hypothesize that physi-
ological changes induced by larval fungicide exposure may
alter internal chemistry, leading to modifications in CHC
production during adulthood. In moths, such changes often
manifest as variations in the quantity or relative concentra-
tions of chemical compounds released (Heuskin et al. 2014;
Ngumbi et al. 2020).

Aside from the disruption of chemical or visual cues,
other sublethal effects of fungicide exposure may contrib-
ute to the observed disruption in mating behaviour (Desneux
et al. 2007). The combined effects of sublethal fungicide
exposure and thermal stress can reduce moth activity,
inhibit female calling behaviour, or impair male locomo-
tion, thereby disadvantaging exposed individuals (Knight
and Flexner 2007; Bernardes et al. 2022). This reduction in
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sexual activity could explain the higher mating success of
unexposed individuals, compared to fungicide-exposed indi-
viduals, and the occurrence of mating failure. In our experi-
mental setup where individuals were free to move, physical
capacities and sexual motivation likely contributed to mating
success. A complementary study assessing partner motiva-
tion, such as measuring female calling activities and male
locomotion activity, could provide further information about
the behavioural mechanisms underlying these effects (Muller
et al. 2016a). Overall, these results highlight the vulnerabil-
ity of mating systems to combined environmental stressors.
In L. botrana, fungicide exposure during larval development
under warming disrupts the complex interplay of sensory
cues involved in mate selection, leading to reduced mating
success. Investigating the physiological basis of these dis-
ruptions could provide valuable insights into the combined
effects of agrochemicals and climate change on insect repro-
ductive systems.

Mechanisms influencing partner quality

Beyond the direct cues influencing mate perception in
moths, fungicide exposure primarily impacts larval devel-
opment, a critical period in which physiological changes can
have lasting consequences in adulthood. Especially for capi-
tal breeders, whose reproductive success depends on energy
reserves accumulated during the larval stages (Muller et al.
2015, 2016c). Environmental stressors, such as temperature
fluctuations and fungicide exposure, can disrupt the synthe-
sis of these reserves, reducing mate quality and impairing
reproductive outcomes (Muller et al. 2016c¢; Iltis et al. 2020;
Garinie et al. 2024; Nusillard et al. 2024a). The decline in
partner quality, observed under future climatic conditions,
but not under current ones, may be attributed to physiologi-
cal mechanisms, potentially linked to developmental disrup-
tions caused by fungicide exposure.

Fungicide exposure prolonged L. botrana development
time by approximately four days (+ 10%) and reduced male
and female pupal mass for both climatic scenarios. This
extended development time regardless of climatic condi-
tion suggests a potential trade-off, where energy typically
allocated to growth is redirected towards detoxification pro-
cesses (Fujii et al. 2020). Detoxification enzymes present in
L. botrana, such as glutathione S-transferases (GSTs) and
metallothioneins, facilitate the neutralization of heavy met-
als, including the copper found in Bordeaux mixture (Nav-
arro-Roldan et al. 2020; Tibbett et al. 2021; Gekiere 2025).
Temperature directly influences the activity of detoxification
enzymes (Li et al. 2023). Higher temperatures under future
conditions can alter enzyme efficiency, potentially reduc-
ing an organism’s ability to neutralize copper, then induc-
ing greater physiological damages to larvae impacting adult
behaviour and life-history traits. In addition, development
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time under current climatic conditions was significantly
longer by approximately 10 days (28%) compared to future
conditions. While this longer development may increase
larval exposure to the fungicide, it could also provide addi-
tional time for the detoxification and metabolization of this
fungicide. We hypothesize that under future climatic condi-
tions, the combination of faster development and temper-
ature-driven changes in detoxification efficiency results in
greater physiological impairments. This, in turn, reduces the
quality of adults as mating partners.

Our study indicates that the adverse consequences of
fungicide exposure on partner quality under future climatic
conditions may be attributable to a combination of factors,
including reduced development time, diminished detoxifica-
tion capacity, and temperature-induced changes in detoxifi-
cation efficiency. These elements ultimately exert an influ-
ence on mate selection and reproductive success.

Implications for pest management

Assessing the life parameters of L. botrana has provided
insights into the potential evolution of its population dynam-
ics in response to Bordeaux mixture exposure under a chang-
ing climate. Our results indicate an important shift in life
parameters, particularly when females were exposed to
the fungicide—regardless of whether they mated with an
exposed or unexposed partner. This effect was especially
pronounced under current climatic conditions. This finding
underscores the pivotal role of female exposure in reducing
reproductive output and population growth. Overall, larval
exposure negatively affected development and reproduction
across both climatic scenarios, in accordance with Garinie
et al. (2024) which reported the adverse effects of Bordeaux
mixture under constant climatic conditions.

Concerning climate influence, our results suggest that
population growth parameters, including doubling time (Dt),
intrinsic rate of increase (r,,), and finite rate of increase (),
did not significantly differ between scenarios. However,
future climatic conditions had negative effects on survival
rates and showed a general trend towards reduced repro-
ductive output. This decline in reproductive rate (R,) was
partially offset by an accelerated mean generation time (T),
which was significantly shorter under future conditions,
thereby explaining similarities between population growth
observed between current and future climatic scenarios.
However, our study examines the effects of global warming
on a first-generation population, which has not undergone
prior adaptations or been exposed to this stress previously.
Therefore, our results do not account for potential evolution-
ary adaptations that may mitigate the negative impacts of
rising temperatures on L. botrana survival and reproduction
over multiple generations (Bale et al. 2002; Hoffmann 2017,
Gonzalez-Tokman et al. 2020). Evidence for other insect
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Fig.8 Schematic representation summarizing the effects of Bordeaux
mixture on Lobesia botrana life cycle and life table parameters under
current and end-of-century climatic conditions. The central sec-
tion presents estimated life table parameters, while the left and right
sections illustrate the life cycle under current (blue) and future (red)
climatic conditions. Within each cycle, average developmental vari-

species suggests that phenotypic plasticity and genetic vari-
ation shape responses to elevated temperatures (Sgro et al.
2016; Hill et al. 2021). Similarly, L. botrana may rely on
plasticity to buffer temperature changes (e.g. behavioural and
morphological), but long-term survival will likely depend on
local adaptation (Sgro et al. 2016; Hill et al. 2021).

A northward shift in L. botrana populations may occur
as climate change causes summer temperatures in south-
ern regions to approach their upper thermal limit (Gutierrez
et al. 2018). Future research should examine how plasticity
and genetic variation interact to shape L. botrana response
to climate change. Differences between generation time
and doubling time, due to fungicide exposure and/or cli-
matic conditions, could also influence biotic interactions,
particularly biocontrol strategies targeting L. botrana. Para-
sitoids, commonly used in biological control methods, can
be directly or indirectly affected by thermal and chemical

ables and results from no-choice mating tests are displayed. Females
are represented in pink and males in green. Lighter colours indicate
averages for control individuals (not exposed to the fungicide), while
darker colours represent fungicide-exposed individuals. Rectangles
denote results from choice experiments

stressors. For example, Iltis et al. (2022) reported enhanced
immune activity for L. botrana under future climatic condi-
tions compared to current ones. In addition, Nusillard et al.
(2024b) showed that future climatic conditions reduced the
number of parasitized eggs, emergence rate and offspring
quality (size, longevity, fecundity) in 7. oleae, particularly
when the host L. botrana had been exposed to Bordeaux
mixture. These findings suggest that climate change and
Bordeaux mixture exposure may reduce the effectiveness
of biological control strategies against L. botrana. A better
understanding of the combined effects of global warming
and Bordeaux mixture on L. botrana and its natural enemies
is thus needed. These studies will be essential for refining
biocontrol programs, ensuring they can adapt to evolving
pest dynamics, and remain as effective when facing fungi-
cide exposure and future climatic conditions. Finally, while
this study simulated a future climatic scenario by controlling
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temperature and humidity, climate change encompasses a
broad range of environmental shifts that cannot be fully
replicated in climate chambers, such as elevated CO, and
ozone levels, or altered precipitation patterns. Moreover, the
controlled and laboratory conditions within climate cham-
bers limit insects’ behavioural thermoregulation. In natural
environments, L. botrana can exploit a wide range of micro-
habitats, seeking out shaded, cooler, or more humid sites to
reduce exposure to adverse temperatures and light. Future
experiments in natural environment are thus needed to bet-
ter understand the impact of climate change and pesticide
exposure on mate selection and the reproductive behaviour
of most pests.

Conclusion

This study highlights the intricate and multifaceted effects of
Bordeaux mixture on L. botrana in a context where global
warming is reshaping pest pressures in vineyards worldwide,
potentially altering pest dynamics and complicating manage-
ment strategies. Our results show that increased tempera-
tures and drought conditions will have an impact on larval
development and the adult stage of L. botrana, and alter the
influence of fungicide exposure.

Under current climatic conditions, fungicide exposure pri-
marily disrupts larval development, with limited impact on
the adult stage (Fig. 8). However, fungicide exposure under
the future climatic scenario had broader consequences, alter-
ing both larval development and adult reproductive behaviour.
Behavioural choice experiments revealed that focal individu-
als significantly preferred unexposed sexual partners over
those exposed to the fungicide. These findings suggest that
the adverse effects of fungicide exposure reduce individual
performance at elevated temperatures, thereby allowing mate
selection to occur under these conditions. This has significant
potential to impact the reproductive success and population
dynamics of L. botrana. Such behavioural shifts may also
reflect a broader ecological phenomenon in which chemical
stressors interact with global warming to influence insect life
histories and mating mechanisms. In addition, this study pro-
vides valuable information into population dynamics under
future environmental stress. While no increase in population
growth was observed under warmer conditions, the potential
adaptive capacity of insects to stressful environments must be
considered (Sgro et al. 2016; Hoffmann 2017; Hill et al. 2021).
Overall, our results emphasize the need for further investiga-
tion into the collateral effects of agricultural practices, such as
fungicide application, in the context of climate change. The
interaction between chemical exposure and global warming
has the potential to alter insect life cycles, reproductive strat-
egies, and population dynamics in complex and unexpected
ways. By shedding light on the complex interactions between
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global change and fungicide exposure, our research contributes
to a deeper understanding of the challenges pest management
is facing in an era of rapid environmental change.
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