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Abstract

A key question in microbial ecology is how the microbiota regulates host invasion by pathogens. Several ecological theories link the
diversity, abundance and assembly processes of the microbiota with its resistance to invasion, but the specific properties of microbial
communities that confer protection to the host are poorly understood.

We addressed this question for the oomycete Plasmopara viticola, the causal agent of grapevine downy mildew. Using state-of-the-art
microbial ecology methods, we compared microbial communities associated with asymptomatic and symptomatic leaf tissues to
elucidate pathogen-microbiota interactions.

Despite visible symptoms, P. viticola infection induced only subtle changes in microbial community composition. Symptomatic tissues
showed enrichment in basidiomycete yeasts and Bacillus species, both known for their biocontrol activity, and exhibited a higher de-
gree of determinism in community assembly processes. Asymptomatic tissues hosted more diverse microbiota, but lacked consistent
associations with known biocontrol agents. Instead, they were often associated with other airborne grapevine pathogens.

These findings suggest a novel interaction scenario: upon infection, P. viticola reshapes locally the leaf microbiota, excluding other
pathogens and selecting for beneficial microbes. Although further studies are needed to uncover the underlying mechanisms, these
findings underscore the relevance of targeting disease lesions in the search for protective microbial consortia.

Keywords: biocontrol; community ecology; Grapevine downy mildew; host-microbiota-pathogen interactions; microbial community

assembly

Introduction

The role of the microbiota in the emergence and spread of dis-
eases has long been overlooked. However, the intricate interac-
tions between hosts, pathogens and the microbiota are now cen-
tral to disease research, as host resistance to diseases is, at least
in part, driven by the composition of the microbiota and the occu-
pation of the microbial niche (Vannier et al. 2019, Liu et al. 2020,
Ping et al. 2024). This growing awareness has spurred the devel-
opment of new concepts, such as disease ecology and the patho-
biome (Vayssier-Taussat et al. 2014, Bass et al. 2019), and more
recently, the concept of a protective microbiota (Goossens et al.
2023). Central to this field are questions regarding how the mi-
crobiota regulates invasion by pathogens (Teixeira et al. 2019, Li
et al. 2021) and how the host maintains microbiota homeostasis
(Hacquard etal. 2017, Karasov et al. 2020, Paasch and He 2021). Ad-
dressing these questions is key to fighting diseases by harnessing
the microbiota, whether through preventive or curative inocula-
tion of microorganisms; the use of metabolites that steer micro-
bial ecosystem functioning; or the modulation of host physiology,
defense mechanisms, and environmental conditions (Busby et al.
2017, Compant et al. 2025).

Over the past decade, numerous studies have compared the mi-
crobial communities of visually healthy tissues to those of tissues
infected by various plant pathogens, aiming to identify the proper-

ties of the microbiota that promote or inhibit disease (Jakuschkin
et al. 2016, Zhou et al. 2021, Dastogeer et al. 2022). Several ecolog-
ical theories have been tested, including the Anna Karenina Prin-
ciple (Zaneveld et al. 2017, Arnault et al. 2023) and the diversity-
invasibility hypothesis (Jousset et al. 2011, van Elsas et al. 2012).
The Anna Karenina Principle (AKP) predicts that stress, whether
biotic or abiotic, induces dysbiosis, defined as a transient loss of
the host control over its microbiota (Arnault et al. 2023). This loss
alters microbiota composition and function and can be both the
cause and consequence of disease symptoms. According to AKP,
dysbiosis alters the processes of microbiota assembly and man-
ifests as increased stochasticity in microbiota assembly, which
influences sample dispersion (i.e. the degree of dissimilarity ob-
served between microbial samples) (Arnault et al. 2023). It is also
expected to affect microbial e-diversity and load. Several studies
have suggested that the microbial load remains under host con-
trol until pathogenic species invade host tissues and that success-
ful pathogen colonization is associated with a higher microbial
load, either in the natural microbiota (Guo et al. 2020, Karasov
et al. 2020) or in a synthetic microbial community (Wolinska et
al. 2021). According to the diversity-invasibility hypothesis, in-
creased microbial diversity limits pathogen invasion (Jousset et
al. 2011, van Elsas et al. 2012) through at least four mechanisms
namely sampling effect, insurance effect, complementarity effect,
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and synergistic effects (Hooper et al. 2005, Saleem et al. 2019).
However, both the Anna Karenina Principle and the diversity-
invasibility relationship were recently challenged (Williams et al.
2024). There is still a longstanding debate regarding the relation-
ship between the microbiota and host health. In this study, we
aimed to advance this field by investigating the relationship be-
tween the plant microbiota and a major disease caused by a
pathogenic oomycete species.

Oomycetes cause some of the most devastating crop diseases
(Derevnina et al. 2016). Among them, Plasmopara viticola, the
causal agent of grapevine downy mildew was introduced to Eu-
rope in the mid-nineteenth century and devastated European
vineyards due to the high susceptibility of Vitis vinifera (Fontaine
et al. 2021). This foliar disease is now reported in most wine-
producing regions of the world (Bois et al. 2017, Fontaine et al.
2021) and has a significant economic impact (Taylor et al. 2019).
Several microorganisms have been identified as potential biocon-
trol agents through experiments conducted under controlled con-
ditions. These potential biocontrol agents include several bacte-
ria of the Bacillus genus (Zhang et al. 2017, Bruisson et al. 2019),
as well as fungi such as Acremonium byssoides (Burruano et al.
2016), Alternaria spp. (Musetti et al. 2006), Epicoccum nigrum (Ko-
rtekamp 1997), Fusarium spp. (Ghule et al. 2018), and Trichoderma
spp. (Perazzolli et al. 2008, Lazazzara et al. 2021). A recent study
also discovered Simplicillium lanosoniveum, a hyperparasite specific
to P. viticola, through isolation from grapevine lesions (Shen et
al. 2022). In addition, Fournier et al. (2025) reported that fungi
such as Buckleyzyma aurantiaca, Bullera alba, Trichoderma virens, and
Trichoderma hamatum, and bacteria like Streptomyces and Bacillus
were more abundant in soil and phyllosphere of vineyard plots
with historically low downy mildew symptoms. In particular, ba-
sidiomycete yeasts were more abundant in the phyllosphere of
low-disease plots. Despite these discoveries, only Bacillus amylolig-
uefaciens, is currently registered in France for controlling P. viti-
cola (“DGAL/SAS/2022-949"). Consequently, there is considerable
room for improvement in biocontrol strategies targeting grapevine
downy mildew. It would be particularly valuable to explore the
combination of multiple biocontrol agents (Nicot et al. 2012, Xu
and Jeger 2020), building on the diversity-invasibility hypothesis
(Saleem et al. 2019). Such combinations of microorganisms are ex-
pected to improve the efficiency and robustness of biocontrol by
providing functional redundancy and complementarity in modes
of action (Guetsky et al. 2007, Vega et al. 2009, Panebianco et al.
2015).

This study aimed to improve microbial biocontrol strategies for
the pathogenic oomycete P. viticola by deepening our understand-
ing of pathogen-microbiota interactions during infection and by
testing debated ecological theories linking microbiota diversity to
disease development (Williams et al. 2024). We compared micro-
bial community in asymptomatic and symptomatic tissues of nat-
urally infected leaves to identify taxa consistently more abundant
in asymptomatic leaf tissues. We also tested three hypotheses de-
rived from ecological theories. First, we hypothesized that (H1) leaf
tissues that were asymptomatic at the time of sampling during
an epidemic harbor a more diverse microbiota than symptomatic
tissues do, which is consistent with the diversity-invasibility rela-
tionship (Saleem et al. 2019). Second, we hypothesized that (H2)
the microbial load in asymptomatic tissues is lower than that in
symptomatic tissues, in line with the dysbiosis concept, which
posits that disease is linked to a loss of host control over its micro-
biota (Karasov et al. 2020, Arnault et al. 2023). Third, we hypoth-
esized that (H3) infection increases stochasticity in microbiota
assembly processes and alters sample dispersion, in accordance

with the Anna Karenina principle (Zaneveld et al. 2017, Arnault
et al. 2023). Our findings are discussed in the context of develop-
ing microbial biocontrol of grapevine downy mildew, with the ul-
timate goal of reducing grape growers’ reliance on chemical pesti-
cides that are harmful to both human and environmental health
(Rani et al. 2021, Mwaka et al. 2024).

Materials and methods

The experimental design and the dataset have been described in
detail in the data paper by (Barroso-Bergada et al. 2023a), in which
the authors presented microbial profiles and rarefaction curves.
The same dataset was also previously exploited to investigate mi-
crobial interaction networks using an explainable machine learn-
ing framework, namely Abductive/Inductive Logic Programming
(Barroso-Bergada et al. 2023b). In the present study, we extended
these previous works by supplementing the dataset with informa-
tion on bacterial and fungal load and by providing a more compre-
hensive analysis of the microbiota. This included comparisons of
«-diversity, B-diversity and microbial load between symptomatic
and asymptomatic tissues, the detection of disease-related micro-
bial taxa using four methods of differential abundance analysis
and TITAN, and the investigation of community assembly pro-
cesses.

Experimental design, P. viticola quantification
and sequencing of fungal and bacterial
communities

The acquisition of the dataset is therefore only briefly summa-
rized here, as it has already been described in detail in (Barroso-
Bergada et al. 2023a). A total of 270 grapevine leaves were collected
in 2018 from nine vineyard plots across three major French wine-
growing regions (Occitanie, Nouvelle-Aquitaine, hereafter referred
to as Aquitaine and Champagne) (Supplementary Fig. S1). during
the peak of the grapevine downy mildew epidemic. From each leaf,
discs were cut from both symptomatic (visibly sporulating and
non-necrotic lesions) and asymptomatic areas, and freeze-dried.
Total DNA was extracted and sequenced on an IHllumina MiSeq
platform to characterize fungal (ntDNA ITS gene) and bacterial
(16S TRNA gene) communities. Sequence processing involved the
DADA? pipeline (Callahan et al. 2016), taxonomic assignment us-
ing UNITE All Eukaryotes v8.3 (Abarenkov et al. 2021) and SILVA
v138.1 (Quast et al. 2013) and clustering using the LULU algorithm
(Frgslev et al. 2017). The DNA concentration of P, viticola was quan-
tified across all samples with quantitative real-time PCR targeting
the ITS1. The concentration was then divided by the total DNA
concentration, assumed to consist mainly of leaf DNA, to express
the result as ng of P. viticola DNA per ug of leaf DNA.

Quantification of microbial load

In the present study, we provided a new layer of information
by quantifying microbial load across all samples using digital
droplet PCR assays (ddPCR™; Hindson et al. 2011). Microbial load
was defined as the absolute quantity of microbial DNA, serving
as a proxy for microbial biomass. The ddPCR assays were con-
ducted with the QX200 Droplet Digital PCR System from Bio-Rad
at the Genome Transcriptome Facility of Bordeaux (France). The
primers and probes were synthesized by Integral DNA Technolo-
gles with probes labeled with 5'6-FAM, an Internal ZENTM and
3'IBFQ quenchers.

Fungal DNA was amplified using the universal fungal primer
pair ITS86F (5-GTGAATCATCGAATCTTTGAA-3) and ITS4 (5'-
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TCCTCCGCTTATTGATATGC-3') as recommended by Beeck et al.
(2014). In addition to amplifying fungal sequences, these primers
also amplify oomycete sequences, including those of Plasmopara
viticola, as confirmed by in silico BLAST analyses and confirmed
through PCR assays performed in our laboratory (data not shown).
PCRs were carried out in a final volume of 22 ul using the ddPCR™
EvaGreen Supermix (Bio-Rad, USA) with 11 pl of 2X EvaGreen Su-
permix, 1.83 uL of each primer at 1.5 uM and 2 uL of DNA tem-
plate or ultrapure water as the negative control. A DNA extract of
Phaeomoniella chlamydospora, a pathogenic fungus responsible for
Esca disease in grapevine (Gonzalez-Dominguez et al. 2020), was
used as a positive control.

Bacterial DNA was amplified using the universal bacte-
rial primer pair F_Bact 1369 (5-CGGTGAATACGTTCCCGG-
3), R_Prok1492 (5-TACGGCTACCTTGTTACGACTT-3’) and the
P_TM1389F (5'-CTTGTACACACCGCCCGTC-3) as recommended
by Furet et al. (2009). PCRs were conducted in a final volume of
22 pl using the ddPCR™ Supermix for Probes No dUTP (Bio-Rad,
USA), with 11 ul of 2X Supermix, 2.2 uL of each primer at 9 pM,
1.22 pL of probe at 9 pM and 2 uL of DNA template or ultrapure
water in the negative control. The positive control was the DNA of
a mock community composed of 14 bacterial strains (Streptococcus
mitis, Streptococcus oralis, Pseudomonas aeruginosa, Stenotrophomonas
maltophilia, Staphylococcus epidermidis, Staphylococcus aureus, Acine-
tobacter baumannii, Klebsiella pneumoniae, Proteus mirabilis, Serratia
marcescens, Lactobacillus, Escherichia coli (ATCC 25922), Enterobacter
cloacae, and Enterococcus faecalis (ATCC 29212)).

For both groups, 20 uL of mixture containing the sample was
partitioned into droplets with a QX200 Droplet Generator and then
transferred to 96-well PCR plates. PCRs were performed in a Bio-
Rad C1000 (Bio-Rad, USA) instrument with the following parame-
ters: [95 °C x 5 min; 40 cycles of 95 °C x 30's, 55 °C x 1 min, and
72°C x 30s;4°C x 5min, 90 °C x 5 min] for fungi; and [95 °C x
5 min; 40 cycles of 95 °C x 30's, 60 °C x 1 min; and 98 °C x 10 min]
for bacteria. The QX200 droplet reader analyzed each droplet in-
dividually to detect the fluorescence signal. The number of copies
of the target sequence per microliter of extracted DNA was calcu-
lated from the number of positive droplets (out of an average of
~20k droplets per sample). The estimated load was then obtained
by multiplying the obtained concentration (expressed as the num-
ber of copies/pl) by the mix volume sample/buffer (x11) and after
adjusting for the 1/100 dilution of the DNA extract. The number of
copies was then divided by the total DNA concentration, assumed
to consist mainly of leaf DNA, to express it as number of copies
per pug of leaf DNA.

Statistical analysis

All the statistical analyses were performed with R v4.2.3 (R Core
Team 2023). Microbial community analyses were performed us-
ing the R packages phyloseq v1.48.0 (McMurdie and Holmes 2013)
and speedyseq v0.5.3.9018 (McLaren 2020), and all igures were gen-
erated using the ggplot2 v3 package. 5.1 (Wickham 2016), cowplot
v1.1.3 (Wilke 2024), ggh4x v0.2.8 (van den Brand 2024), ggsignif
v0.6.4 (Ahlmann-Eltze and Patil 2021), patchwork v1.2.0 (Pedersen
2024), microViz v0.10.8 (Barnett et al. 2021), and ggtext v0.1.2 (Wilke
and Wiernik 2022).

Data preparation

Microbial community analyses were either based on the sample
x ASV raw count matrices available from Barroso-Bergada et al.
(2023a), or on matrices transformed to account for compositional
effects. The compositional effects were accounted for by trans-
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forming the raw sequence counts using the centered log-ratio
(CLR) transformation (Gloor et al. 2017). Prior to the CLR transfor-
mation, we applied a Bayesian multiplicative treatment of zeros
using the cmultRepl function of the zComposition package v1.5.0.3
(Palarea-Albaladejo and Martin-Ferndndez 2015). This function
converts zero counts, which would lead to errors in the log ratios,
into estimates close to zero, assuming that these zeros are due to
undersampling rather than absence. It also drops rows (ASVs) or
columns (samples) with more than 80% zeros or missing data.

To construct phylogenetic trees of ASVs, we first performed
multiple sequence alignment using the AlignSeqs function of the
DECIPHER v2.26.0 package (Wright 2016). Next, the phylogenetic
distance matrix was calculated via maximum likelihood using the
dist.ml of the package phangorn v2.11.1 (Schliep 2011, Schliep et al.
2016), and the tree was built using the Neighbor-Joining method
(NJ option of the phangorn package). Finally, we evaluated the phy-
logenetic tree’s likelihood in relation to the alignment and chosen
a model using the pml function of the phangorn package.

Comparison of P. viticola abundance between
asymptomatic and symptomatic leaf tissues

First, we verified that leaf tissues classified as symptomatic based
on visual observations contained a higher DNA amount of P. viti-
cola than tissues classified as asymptomatic based on gPCR data
(available from Barroso-Bergada et al. (2023a), by using a pairwise
Wilcoxon test. The alternative hypothesis that the DNA amount
of P. viticola is higher in asymptomatic tissues was tested by us-
ing the alternative argument = “greater” in the pairwise.wilcox.test
function of the package stats v4.2.3 (R Core Team 2023).

Analysis of factors driving variation in leaf microbiota
composition

Principal Component Analysis (PCA) was applied to the sample x
ASV CLR-transformed matrix to visualize variation in microbial
community composition, using the microViz package. We identi-
fied key factors influencing community composition using vari-
ance partitioning and Redundancy Analysis (RDA) implemented
using the varpart and rda functions of the vegan package v2.6.4
(Oksanen et al. 2024), respectively. Nine explanatory factors were
used in both analyses. For variance partitioning, we categorized
the data into three groups: Disease, Geography and Variety. The
‘Disease’ category represented infection by P. viticola and included
two variables: the P. viticola DNA concentration estimated by gPCR
(in ng/pl) and visual assessments of downy mildew symptoms
(asymptomatic or symptomatic leaf samples). The ‘Variety’ cate-
gory comprised a single variable, representing the grapevine va-
riety. This variable had seven modalities, corresponding to the
grape varieties (Chasan, Chardonnay, Gamay, Merlot, Cabernet
Franc, Meunier, Pinot Noir) included in the experiment (Barroso-
Bergada et al. 2023a). The ‘Geography’ category represented the
sample location and consisted of six variables. The first variable
was the vine leaf number from which the leaf discs were sam-
pled. This variable was used to take into account the pairing be-
tween symptomatic and asymptomatic tissue samples collected
from the same leaf. The five other variables were the Principal
Coordinates of the Neighbourhood Matrix (PCNM; Borcard and
Legendre 2002), which represents the spatial distribution of the
nine vineyard plots included in the experiment (Barroso-Bergada
et al. 2023a). The PCNMs were generated by (1) calculating a Eu-
clidean distance matrix between all samples using their spatial
coordinates (longitude and latitude) with the distance function of
the vegan package and (2) applying the pcnm function of the ve-
gan package to perform Principal Coordinates Analysis (PCoA) on
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the truncated matrix, which provided the eigenvectors associated
with positive eigenvalues—the PCNMs—that we used as spatial
predictors in the RDA. The PCNMs captured both the higher prox-
imity of samples collected from the same plot (plot effect) and
the higher proximity of samples collected from the same wine-
producing region (region effect). For both variance partitioning
and RDA, the sample x ASV CLR-transformed matrix was used
as the response variable. Nonnumeric explanatory variables were
treated as dummy variables, and all variables were standardized
using the scale function (package base v4.2.3 (R Core Team 2023)).
For the RDA, an automatic stepwise selection of explanatory vari-
ables, both forward and backward, was performed using the ordis-
tep function of the vegan package. Finally, an RDA was performed
with all selected explanatory variables included as constraints.
Permutation tests were performed using the anova.cca function of
the vegan package to assess the significance of the fitted models
and to evaluate the marginal effects of the constraints.

Identification of microbial taxa specific to asymptomatic
and symptomatic leaf samples

To determine whether asymptomatic and symptomatic samples
exhibited higher abundances of specific microbial taxa, we used
a set of four Differential Abundance Analysis (DAA) methods:
ANCOM-BC2 (Lin and Peddada 2024), Maaslin2 (Mallick et al.
2021), LinDA (Zhou et al. 2022) and ZicoSeq (Yang and Chen 2022).
We selected these methods recommended in recent methodolog-
ical studies for the following reasons: they were specifically de-
veloped for microbiota analysis by explicitly accounting for zero
inflation and compositional effects; they allow the specification
of random and covariate effects (Nearing et al. 2022, Yang and
Chen 2022, 2023, Regueira-Iglesias et al. 2023). This set of four
DAAs was used to compare ASV abundances between asymp-
tomatic and symptomatic samples while accounting for micro-
bial community variation among plots. For all four methods, the
plot and leaf number from which the symptomatic and asymp-
tomatic samples were taken were included as random factors. The
parameters were set to defaults except for the minimum preva-
lence threshold, which was set to 10%, and the adjusted p value
foran ASV to be considered differentially abundant, which was set
to 0.05. All analyses were performed using the sample x ASV raw
count matrix. They were performed using the ANCOMBC v2.0.3
(Lin and Peddada 2020, Lin et al. 2022), Maaslin2 v1.12.0 (Mallick
et al. 2021), GUniFrac v1.8 (Chen et al. 2023), and MicrobiomeStat
v1.2 (Zhang et al. 2024) packages. For each ASV identified as dif-
ferentially abundant by at least one of the four DAA methods, we
calculated two scores, as described in Fournier et al. (2025): (1)
the number of methods that identified this ASV as differentially
abundant, ranging from 1 to 4, and (2) the average association co-
efficient across the methods. To calculate the average association
coefficient, the coefficients provided by each DAA method were
standardized between 0 and 1 when the ASV was more abundant
in asymptomatic samples and between 0 and -1 when the ASV
was more abundant in symptomatic samples before calculating
the average coefficient across the methods.

In addition, we identified the microbial taxa whose relative
abundance covaries with the total DNA concentration of P. viticola
in leaf samples, as determined by gPCR values, using the Thresh-
old Indicator Taxa ANalysis (TITAN) method of the TITAN2 pack-
age v2.4.3 (Baker et al. 2023). For this analysis, we used the sample
x ASV raw count matrix, keeping only ASVs with more than 100
reads in total and present in at least 3 samples, as required by TI-
TAN. The method identified ASVs whose abundance increased as
the P. viticola DNA concentration decreased and ASVs whose abun-

dance increased as the P. viticola DNA concentration increased.
These ASVs are hereafter referred to as indicators of low and high
P. viticola DNA concentrations in leaves. To evaluate the strength
of the relationship, we used the standardized Indicator Value (In-
dval) score defined by Dufréne and Legendre (1997) expressed as
a z score.

Testing Hypothesis H1: is microbiota a-diversity higher in
leaf tissues that were asymptomatic at the time of
sampling during the epidemic than in disease lesion?

To assess whether the a-diversity of the leaf microbial communi-
ties was higher in asymptomatic leaf tissues than in symptomatic
leaf tissues, we calculated three diversity indices. These indices
are part of the Hill number framework (Chao et al. 2014), which
includes a parameter q that determines the sensitivity of the in-
dices to the relative abundance of ASVs. This framework gives
less weight to rare ASVs as q increases. The Hill number corre-
sponding to q = O represents the richness of ASVs, where each ASV
counts for 1 regardless of its relative abundance. The Hill number
corresponding to q = 1 is the exponential of Shannon’s entropy
index (Shannon 1948), where the weight of each ASV is propor-
tional to its relative abundance. The Hill number corresponding
to q = 2 is the inverse of Simpson’s concentration index (Simp-
son 1949), which disproportionately favors abundant ASVs and
is particularly relevant for metabarcoding data, as rare ASVs of-
ten correspond to artifacts, and their inclusion can lead to erro-
neous ecological conclusions (Taberlet et al. 2018). The three in-
dices were calculated from the sample x ASV raw count matrix
using the ChaoRichness, ChaoShannon, and ChaoSimpson functions
in the INEXT v3.0.1 package (Chao et al. 2014, Hsieh and Chao
2024). Microbiota diversity was compared between asymptomatic
and symptomatic leaf samples using linear mixed-effects mod-
els. We built six models, each corresponding to a combination of
the microbial kingdom (bacteria or fungi) and the «-diversity in-
dex (q=1, 2 or 3). These models included visual assessments of
downy mildew symptoms (asymptomatic vs. symptomatic leaf
samples) as a fixed effect and leaf number as a random effect
to consider the pairing of symptomatic and asymptomatic sam-
ples taken from the same leaf. Additional fixed effects, such as
grapevine variety, plot, and region, were also included to con-
trol for potential confounding factors affecting microbial diversity.
Graphical checks for homoscedasticity and normality of residuals
were performed using the packages performance v0.12.0 (Lidecke
et al. 2021) and DHARMa v0.4.6 (Hartig and Lohse 2022). Model
construction and evaluation were conducted using the packages
ImerTest v3.1.3 (Kuznetsova et al. 2017) and car v3.1.2 (Fox and
Weisberg 2018). When explanatory factors with more than two
levels were significant, post hoc tests were conducted using the
emmeans function of the emmeans v1.10.1 package (Lenth et al.
2024) to estimate marginal means for each factor level. To ad-
just for multiple comparisons, we applied the Bonferroni method
using the pairs function of the graphics v4.2.3 package. Finally,
the means were ranked in descending order, and groupings were
identified using the cld function of the Ismeans v2.30.0 package
(Lenth 2016) to highlight significant differences between factor
levels.

Testing Hypothesis H2: do fungal and bacterial loads
increase in disease lesions caused by the oomycete P.
viticola, suggesting a loss of plant control over its
microbiota?

Linear mixed-effects models were also used to compare micro-
bial loads measured by digital droplet PCR between asymptomatic
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and symptomatic leaf samples. We built two models, one for each
microbial kingdom (bacteria or fungi). The models included vi-
sual assessments of downy mildew symptoms (asymptomatic vs.
symptomatic leaf samples) as a fixed effect and leaf as a random
effect to consider the pairing of symptomatic and asymptomatic
samples taken from the same leaf. Additional fixed effects, such
as grapevine variety, plot, and region. Model evaluation was per-
formed as described above.

Testing Hypothesis H3: does infection increase stochasticity
in microbiota assembly processes and alter sample
dispersion, in accordance with the Anna Karenina
principle?

We quantified the ecological processes driving microbial com-
munity assembly in both asymptomatic and symptomatic tis-
sues, using the p-nearest-taxon index (BNTI) and the normalized
stochasticity ratio (NST). The BNTI (Stegen et al. 2012) quanti-
fies phylogenetic turnover between site pairs by comparing ob-
served mean nearest taxon distances (BMNTDs) to null expecta-
tions, thereby distinguishing stochastic from deterministic com-
munity assembly processes. The NST (Ning et al. 2019) estimates
the relative influence of stochasticity by comparing observed
community similarity to that expected under null models, yield-
ing a normalized value indicative of stochastic or deterministic
structuring.

We calculated their values for every sample following the pro-
cedures described by Barnett et al. (2020) and Ning et al. (2019),
and we performed all the statistical tests according to their out-
lined methods. For NST calculation, we used the function pNST,
which estimates NST on the basis of phylogenetic beta diversity
(Guo et al. 2018, Ning et al. 2019), which we estimated using the
B-mean-nearest-taxon distance (BMNTD). This method has been
shown to perform better in stochasticity estimation than NST
based on taxonomic dissimilarity indices in several cases (Ning
et al. 2020).

According to Stegen et al. (2013), B-NTI values between -2 and
2 indicate a dominance of stochastic processes, whereas |8-NTI|
>2 reveals the dominance of deterministic processes. NST values
classify community assembly as more stochastic (>50%) or more
deterministic (<50%) (Ning et al. 2019). To compare SNTI values
between symptomatic and asymptomatic leaf samples, we per-
formed a Kruskal-Wallis test. NST values were compared between
the two groups using bootstrap resampling (nst.boot function from
the NST package).

To evaluate the effect of disease symptoms on sample disper-
sion, we first calculated the weighted UniFrac distance as a 8-
diversity index using the distance function in the phyloseq pack-
age. We then quantified the sample dispersion by calculating the
distance of each sample to its group centroid using the betadis-
per function from the vegan package (comparing symptomatic and
asymptomatic tissues). Differences in dispersion between groups
were tested for statistical significance using the permutest func-
tion, also from the same package.

Results

Our results complement and extend previous analyses of the
same dataset, which included microbial community profiles
(Barroso-Bergada et al. 2023a), and illustrated a new network
learning method using the fungal dataset (Barroso-Bergada et al.
2023b).
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gPCR data confirm minimal infection of
asymptomatic tissues by P. viticola

As expected, the DNA amount of P. viticola was significantly lower
in asymptomatic leaf tissues than in symptomatic leaf tissues
(paired Wilcoxon test, p < 0.001, n = 446) (Supplementary Fig. S2).
In asymptomatic tissues, the P. viticola DNA amount was very low
with a median value of 0.07 ng per pg of leaf DNA, and there was
minimal variability among samples (Supplementary Fig. S2). In
disease lesions, however, the P. viticola DNA amount was signifi-
cantly higher, with a median value of 193 ng/pg and there was
considerable variability among samples (Supplementary Fig. S52).
A few samples showed similarly low levels to those found in
asymptomatic tissues. Conversely, a small number of asymp-
tomatic samples showed measurable levels of P. viticola DNA, in
some cases comparable to those observed in symptomatic tissues.
These results support the relevance of classifying samples into
two categories (asymptomatic vs. symptomatic) based on visual
observations of symptoms while also highlighting both a gradi-
ent of P. viticola DNA amount within symptomatic tissues—which
may reflect different stages of infection—and the occasional de-
tection of high levels of pathogenic DNA in visually asymptomatic
samples.

Geography, and to a lesser extent grapevine
variety, have more influence on microbiota
composition than infection by downy mildew

Fungal communities of grapevine leaves were spatially struc-
tured, with marked differences in composition among the three
wine-producing regions (Figs. 1A and 3A and Supplementary
Fig. S3A). Geography was the main driver of fungal community
variation, accounting for 36.82% of the variance, followed by
grapevine variety (6.16%) and infection by downy mildew (0.59%)
(Supplementary Fig. S4A). According to the redundancy analysis
(RDA), all three factors had a significant effect (Supplementary
Table S1). The bacterial communities were less spatially struc-
tured than the fungal communities were but still exhibited re-
gional variation across the three wine-producing regions (Fig. 1B;
Supplementary Fig. S3B). Geography was also the main driver of
variation in bacterial community composition, explaining 15.06%
of the variance, followed by grapevine variety (3.31%) and infec-
tion by downy mildew (0.51%) (Supplementary Fig. S4B). How-
ever, according to the redundancy analysis (RDA), only geog-
raphy had a significant effect on the bacterial communities
(Supplementary Table S1). Importantly, however, the grapevine
variety was not uniformly distributed across regions: each vari-
ety was sampled in a single plot, except for Chardonnay (which
was sampled in Occitanie and Champagne) and Merlot (which
was sampled in two plots in Aquitaine). Consequently, the ef-
fect of grapevine variety may be partially confounded by plot
or regional effects in both fungal and bacterial community
analyses.

Fungal community profiles varied between southern (Occi-
tanie) and northern (Champagne) regions of France (Fig. 2A),
with a marked shift from higher proportions of Basidiomycetes—
particularly the Tremellomycetes class—in southern France to in-
creased proportions of Ascomycetes, especially Dothideomycetes,
in northern France. The most abundant fungal species were gen-
erally shared across regions (Table 1), but their total relative
abundance varied with the South to North gradient: they rep-
resented 40.8% of the species in Occitanie, 60.6% in Aquitaine
and 86.8% in Champagne. In addition, their relative abundances
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Figure 1. Variation in the microbial community composition of grapevine leaves sampled during a downy mildew epidemic across three French
wine-growing regions. Compositional dissimilarities between (A) fungal and (B) bacterial communities of grapevine leaves, represented by a Principal
Component Analysis (PCA). Samples collected from the same wine-growing region are represented with the same color and are enclosed within an
ellipse. Symbols indicate leaf tissue status: circles for asymptomatic leaves and triangles for downy mildew-symptomatic ones.

varied between regions. Among the top 10 most abundant fungal
species present in the 3 regions were the basidiomycete yeasts
Filobasidium chernovii, Filobasidium oeirense, Vishniacozyma victoriae,
and Sporobolomyces roseus, as well as the ascomycetes Cladospo-
rium delicatulum and Mycosphaerella tassiana. The latter increased
markedly in abundance from South to North (7.07% in Occi-
tanie, 9.88% in Aquitaine, and 48.10% in Champagne), contribut-
ing significantly to the higher proportion of Ascomycetes in the
northern region. Other species, such as Filobasidium wieringae, Al-
ternaria metachromatica, and Stemphylium solani, were among the
top 10 in two of the three regions. Other species, such as Phebia
rufa and Vishniacozyma carnescens in Occitanie, Itersonilia pannonica
and Udeniomyces pyricola in Aquitaine or Dioszegia hungarica and
Bulleromyces albus in Champagne, were present in only one region.
Despite similarities in the core bacterial genera across regions, the
relative abundance of the dominant taxa varied geographically.
The genera Sphingomonas, Frigobacterium, Pantoea, Curtobacterium,
and Methylobacterium were consistently among the top 10 most
abundant genera across all three regions (Table 2). Notably, Sph-
ingomonas decreased in abundance from South to North (36.95%
in Occitanie, 24.20% in Aquitaine, and 6.46% in Champagne), re-
flecting a regional gradient similar to that observed for fungal
taxa.

Some fungi, but not bacteria, are consistently
more abundant in asymptomatic leaf tissues
across wine-producing regions

Differential abundance analysis (DAA) conducted at the national
level (i.e. using the full dataset combining all three regions) iden-
tified 22 fungal ASVs that were significantly more abundant in

asymptomatic leaf tissues (Supplementary File S2), whereas TI-
TAN identified 78 fungal ASVs whose abundance was negatively
correlated with the DNA concentration of P. viticola in leaf tissues
(Supplementary File S3). Seventeen fungal ASVs were identified by
both DAA and TITAN (Fig. 3), all of which belong to the Ascomy-
cota phylum (Fig. 4). To assess region-specific patterns, DAAs were
then performed separately on each regional dataset. These results
revealed that both Occitanie and Aquitaine harbored distinct sets
of fungal taxa that were more abundant in asymptomatic tissues
(Figs. S4 and S5), whereas no such taxa were detected in Cham-
pagne (Fig. S6). Interestingly, at the national scale, two fungal
ASVs assigned to pathogenic genera, Erysiphe (ASV36) and Botry-
tis (ASV208), were significantly more abundant in asymptomatic
tissues when considering the full dataset encompassing all three
regions (Fig. 3). Similar patterns emerged from the regional anal-
yses: Botrytis (ASV208) was more abundant in asymptomatic tis-
sues in both Occitanie and Aquitaine, while Erysiphe (ASV36) was
more abundantin asymptomatic tissues in Aquitaine (Figs. S5 and
S6).

In contrast, DAA conducted at the national level did not
identify any bacterial ASVs that were significantly more abun-
dant in asymptomatic leaf tissues (Supplementary File S2 and
Supplementary Fig. S8). However, TITAN identified 33 bacterial
ASVs whose abundance was negatively correlated with the DNA
concentration of P. viticola in leaf tissues (Supplementary File S3;
Fig. 5). When applied separately to each regional dataset, DAA
identified three bacterial ASVs that were significantly more abun-
dant in asymptomatic tissues in the Occitanie region: one as-
signed to the Pseudokineococcus genus and two to the Methylobac-
terium genus (Supplementary Fig. S9).
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Figure 2. Microbial community profiles of grapevine leaves according to geographic region and leaf tissue status (asymptomatic vs. downy
mildew-symptomatic). (A) Fungal and (B) bacterial community profiles in asymptomatic and downy mildew-symptomatic grapevine leaf discs
collected during the peak of the downy mildew epidemic across nine plots (A-I) in three French wine-growing regions: Occitanie, Aquitaine and
Champagne (Fig. 1). The relative abundances of fungal classes and bacterial phyla are averaged over the 30 samples collected for each condition. In
the fungal community profiles, the Ascomycota classes are represented by a pink gradient, whereas the Basidiomycota classes are represented by a

blue gradient.

Basidiomycetous yeasts and Bacillales increase
in abundance in disease lesions of P. viticola

DAA conducted at the national level revealed that 11 fungal
ASVs were significantly more abundant in disease lesions, all
of which were basidiomycetous yeasts. These genera included
Bulleromyces albus, Cryptococcus laurentii, Curvibasidium cygneicollum,
Cystofilobasidium macerans, Filobasidium wieringae, Holtermanniella
wattica, Sporobolomyces patagonicus, Sporobolomyces roseus (repre-
sented by three different ASVs), and Udeniomyces pyricola (Fig. 3).
Eight of these ASVs were also identified as significant by TITAN
(Fig. 3 and Fig. 4). This predominance of basidiomycetous yeasts
in symptomatic tissues was consistently observed when analyses
were conducted at the regional scale (Supplementary Figs. S6-S7),
particularly in Aquitaine, where 8 out of 9 differentially abundant
ASVs were assigned to this group. Five of these ASVs were also
significant according to TITAN (Supplementary Fig. S6). Notably,
Sporobolomyces roseus was consistently found to be significantly
more abundant in disease lesions, both across all regions and
within individual regions, except for Occitanie, where no fungal

ASVs were identified as more abundant in disease lesions (Fig. 3
and Supplementary Figs. S5-S7).

DAAs revealed that only a few bacterial ASVs were signifi-
cantly more abundant in disease lesions when analyses were
conducted at the national level (2 ASVs assigned to Pantoea and
one to Frigoribacterium) (Supplementary Fig. S8). Region-specific
analyses also revealed differentially abundant bacterial ASVs in
Occitanie—Sphingomonas, Frigoribacterium, and Massilia (2 ASVs)—
and in Champagne—Streptomyces and Bacillus (2 ASVs)—but none
were detected in Aquitaine (Supplementary Figs. S9-S10). TI-
TAN identified 43 bacterial ASVs whose abundance was pos-
itively correlated with the DNA concentration of P. viticola in
leaf tissues (Fig. 5; Supplementary File S3). Among the posi-
tively correlated ASVs, four were assigned to Bacillus, three to
Pseudomonas, three to Pantoea, one to Sphingomonas, and one to
Streptomyces (Supplementary File S3). Fig. 5 shows a subset of
the 40 ASVs with the highest z scores, including both posi-
tively and negatively correlated ASVs; consequently, not all the
ASVs positively associated with P. viticola are represented in
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Figure 3. Fungal ASVs that vary in abundance between asymptomatic and downy mildew-symptomatic grapevine leaf tissue. For each condition
(asymptomatic vs. symptomatic), we represented the ASVs that were significantly more abundant in that condition according to at least one method
of differential abundance analysis (DAA). The four methods used to identify these ASVs are ANCOM-BC2 (Lin and Peddada 2024), MaAslin2 (Mallick et
al. 2021), LinDA (Zhou et al. 2022), and ZicoSeq (Yang and Chen 2022). All analyses were conducted at the national level (i.e. using the full dataset
combining all three regions). Shades of blue and orange indicate the number of DAA methods that identified the ASV as differentially abundant
(ranging from 1 to 4). ASVs belonging to basidiomycete yeasts are highlighted in green and marked with a dot while those known as foliar pathogens
of grapevine are highlighted in pink and marked with a triangle. ASVs that do not meet either of these criteria are displayed in black without any
specific symbol. ASVs that are also significant in the TITAN analysis (Baker et al. 2023) are shown in bold. The y-axis provides information on the
lowest taxonomic level at which each ASV was identified, including its prefix, assignment, and number of ASVs. The prefix abbreviations are p for

phylum, ¢ for class, o for order, f for family, g for genus, and s for species.

the figure. The complete list is available in Supplementary File
S3.

The microbial «-diversity and bacterial load both
decrease in disease lesions

The bacterial and fungal community «-diversities were signifi-
cantly higherin leaf tissues that were asymptomatic at the time of
sampling during the downy mildew epidemic (Fig. 6A-C for fungi
and Fig. 6E-G for bacteria; Table S2), in accordance with hypothe-
sis H1. However, in the case of fungal communities, the difference
was not significant when the inverse Simpson’s index was used
to estimate «-diversity (Fig. 6C), suggesting that the variation in
diversity between asymptomatic tissues and disease lesions was
due primarily to rare fungal ASVs.

The bacterial load was significantly lower in symptomatic tis-
sues according to ddPCR analysis (Fig. 6H; Table S2), which con-
tradicts our initial expectation (H2). In contrast, the fungal load
was significantly higher in symptomatic tissues than in asymp-

tomatic tissues (Fig. 6D; Table S2). This increase is likely caused
by the increase in P. viticola DNA amount in disease lesions, as
the primers used for ddPCR can amplify both fungi and P. viticola.
According to the results of the qPCR analysis, the P. viticola DNA
amount increased sharply in symptomatic tissues, with a multi-
plicative ratio of 45. In comparison, the overall increase in ITS copy
number/ug of leaf DNA measured by ddPCR was more moderate,
with a multiplicative ratio of 3.2. This discrepancy could reflect a
decrease in fungal load in symptomatic tissues—similar to what
was observed for bacteria.

Selective processes in microbiota assembly
increase in disease lesions

Analyses of the B-NTI and NST indices revealed contrasting com-
munity assembly processes between fungi (Fig. 7A-C) and bacteria
(Fig. 7E-G). Indeed, the bacterial community assemblage was pre-
dominantly governed by stochastic processes (Fig. 7E-G), while de-
terministic and stochastic processes contributed almost equally
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Figure 4. Taxonomic tree of fungal ASVs that vary in abundance according to P. viticola DNA concentration and leaf tissue status (asymptomatic vs.
symptomatic). Orange branches correspond to ASVs that meet both of the following criteria: (i) identified by at least one differential abundance
analysis (DAA) method as more abundant in lesions and (ii) with abundance positively correlated with P. viticola DNA concentration in tissues
(according to TITAN analysis (Baker et al. 2023)). The blue branches correspond to ASVs identified by at least one DAA as more abundant in
asymptomatic tissues and negatively correlated with the P. viticola DNA concentration. The four DAA methods used were ANCOM-BC2 (Lin and
Peddada 2024), MaAslin2 (Mallick et al. 2021), LinDA (Zhou et al. 2022), and ZicoSeq (Yang and Chen 2022). All analyses were conducted at the national
level (i.e. using the full dataset combining all three regions). Note that all the ASVs shown in orange belong to the Basidiomycota phylum, whereas

those in blue are exclusively from the Ascomycota phylum.

to the assembly of fungal communities (Fig. 7A-C). According to
the NST values (<50%), fungal communities even tended to be
shaped more by deterministic processes (Fig. 7A).

Deterministic processes in fungi were solely due to ho-
mogeneous selection (Fig. 7C), whereas in bacteria, these
processes were more balanced between homogeneous selec-
tion and variable selection (Fig. 7G). Contrary to hypothe-
sis (H3), stochasticity did not increase in disease lesions. In-
stead, selective processes increased slightly in disease lesions
for both fungal communities (according to the B-NTI index)
(Fig. 7B) and bacterial communities (according to the NST index)
(Fig. 7E).

The bacterial communities associated with disease lesions
were significantly more dissimilar from each other (i.e. more dis-

persed) than were those associated with asymptomatic tissues
(Fig. 7H). However, this pattern did not hold for the fungal com-
munities (Fig. 7D).

Discussion

In the present study, we applied state-of-the-art methods in mi-
crobial community ecology to the metabarcoding datasets pro-
vided by Barroso-Bergada et al. (2023a) and complemented these
datasets with additional quantitative data. We compared the di-
versity, composition, and assembly processes of microbial com-
munities between asymptomatic leaf tissues and downy mildew
lesions across three French wine-growing regions. This detailed,
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Figure 5. Bacterial taxa whose abundance covaries with the P. viticola DNA concentration in grapevine leaf tissues. The figure displays ASVs whose
abundance is significantly correlated with the P. viticola DNA concentration in leaf tissue, as identified by TITAN analysis (Baker et al. 2023). ASVs in
blue are negatively correlated with P. viticola DNA levels, indicating that they are more abundant when its concentration is low. Conversely, ASVs in
orange are positively correlated, being more abundant at high P. viticola DNA levels. The analysis was conducted at the national level (i.e. using the full
dataset combining all three regions). The y-axis provides information on the lowest taxonomic level at which the ASV was identified, including its
prefix, assignment, and number of ASVs. The prefix abbreviations are p for phylum, c for class, o for order, f for family, g for genus, and s for species.
The 40 ASVs with the highest z scores are shown in this figure. Members of Bacillus, Pantoea, Pseudomonas, Sphingomonas and Streptomyces are shown in

green followed by a diamond.

theory-driven analysis allowed us to propose a novel scenario
of interactions involving fungi, bacteria, and the pathogenic
oomycete P. viticola, the causal agent of grapevine downy mildew.

A new scenario of interactions between the
grapevine leaf microbiota and P. viticola

Our analyses revealed that the microbial communities associated
with asymptomatic tissues and disease lesions harbored very sim-
ilar taxonomic compositions for both fungi and bacteria, despite
the significant increase in the DNA amount of the pathogen in dis-
ease lesions and the visible symptoms caused to the leaf tissues.
Overall, we detected only subtle changes in the composition of the
leaf microbiota triggered by infection. These changes were driven
by selective processes, according to our analyses of community
assembly processes.

In the case of fungi, leaf tissue infection by P. viticola locally se-
lected for basidiomycetous yeasts, such as Sporobolomyces patago-
nicus, Sporobolomyces roseus, Cryptococcus laurentii, and Udeniomyces
pyricola. These yeasts increased in abundance upon infection
across all wine-growing regions considered. In the case of bacteria,
leaf tissue infection by P. viticola locally selected for certain groups
of bacteria, such as Bacillales and Streptomycetales. In both king-
doms, these compositional shifts were accompanied by reduced
bacterial load (but not fungal load) and «-diversity, and a minor
increase in community assembly determinism—suggesting that
lesions act as environmental filters.

Surprisingly, the leaf tissues that were asymptomatic at the
time of sampling during the epidemic were not consistently as-
sociated with the fungi or bacteria known for their biocontrol
properties. Instead, they were associated with other airborne
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Figure 6. Variation in microbial a-diversity and load between asymptomatic and downy mildew-symptomatic grapevine leaf tissue. The figure shows
the diversity and load of (A-D) fungal and (E-H) bacterial communities in grapevine leaves collected at the peak of the downy mildew epidemic. The
metrics presented, from left to right, are Richness (panels A for fungi and E for bacteria), the observed total number of ASVs (Hill number g = 0);
Shannon (B and F), the exponential of the Shannon entropy index (Hill number q = 1); Simpson (C and G), the inverse of the Simpson concentration
index (Hill number q = 2); and Load (D and H), the microbial load (expressed as the number of copies/ng of plant DNA and estimated using ddPCR).
The statistical significance of the linear mixed effects models is indicated as follows: ns (not significant),  (P<0.05), #x (P<0.01), s (P<0.001). The

detailed statistical results are presented in Table S2.

pathogens of grapevines. The Erysiphe and Botrytis genera, which
comprise species responsible for powdery mildew and gray mold,
respectively, increased in abundance in asymptomatic tissues.
These results suggest that leaf infection by P. viticola locally ex-
cludes other pathogens and selects for specific microbial taxa,
some of which may have biocontrol activities, such as basid-
lomycetous yeasts and Bacillus species.

Fungi and bacteria with known biocontrol
properties are selected for in disease lesions of
grapevine downy mildew

According to our analyses, basidiomycetous yeasts were consis-
tently selected for within disease lesions. We used several meth-
ods to identify the fungal taxa that were enriched in disease le-
sions compared with asymptomatic tissues or whose abundance
is positively correlated with the P. viticola DNA concentration. All
the fungal taxa that met the two criteria were basidiomycetous
yeasts belonging to the classes Microbotryomycetes and Tremel-
lomycetes, including Sporobolomyces roseus, Cryptococcus laurentii,
Curvibasidium cygneicollum, Cystofilobasidium macerans, Bulleromyces

albus, Holtermanniella wattica, and Udeniomyces pyricola. S. roseus
was previously identified as a potential competitor of P. viticola
based on interaction network analysis using the same dataset
(Barroso-Bergada et al. 2023b). Surprisingly, however, our results
show that S. roseus is enriched in diseased lesions, suggesting that
its ecological role may be more complex than simple antagonism.
Basidiomycetous yeasts are well known for their biocontrol ac-
tivity against postharvest diseases (Liu et al. 2013, Spadaro and
Droby 2016, Freimoser et al. 2019). They reduce the development
of pathogens through various mechanisms, including competi-
tion for nutrients and space; secretion of toxins, enzymes, and
volatile organic compounds; direct parasitism; and indirect mech-
anisms such as resistance induction (Liu et al. 2013, Spadaro and
Droby 2016, Freimoser et al. 2019). Fournier et al. (2025) found
basidiomycete yeasts to be significantly more abundant in the
phyllosphere of young grapevine leaves from plots with histori-
cally low downy mildew pressure. This suggests that they may
contribute to early-season protection against P. viticola infection.
Thus, these yeasts are naturally present in the phyllosphere early
in the growing season (Fournier et al. 2025) and appear to in-

GZ0Z JquaAoN 6| UO Jasn || xnespiog AU |d 4l ollaig Aq 2€1.91€8/L | LIBY/ZL/L0L/o01MEe/daSWa/W0od dNo-dlWapede//:sd)y Wody papeojumod


https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data

14 | FEMS Microbiology Ecology, 2025, Vol. 101, No. 12

[ NST ] | B-NTI ] [ Assembly process | | Dispersion
_(Az i S - (B)s L (Cioo (D) — s
1 4 a5 . :
0.75 751 :
=2 0.41 g
=}
e 0504 - mm - e 50
0.3
0.25 == 251 i
0.2 - |
0.00 01

Asympllomatic Sympllomatic Asympltomatic

(E)1 .00

0.75

o
@
5| os0f¢
@
1]

0.25

0.00

Symptlomati c

Asympltomatic Sympilomalic Asympllomatic Sympllernatic

| —— -
0.51

- 0.41

- 0.3

' l

Asyrnplmmatic Sympllomatic Asymp'tomatic

Symptlomatic

Asymptomatic Syrnp!'omatic Asympllomatic Sympllomatic

Assembly process . Variable Selection Homogeneous Selection . Stochastic
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each sample based on weighted UniFrac distances.

crease in abundance within disease lesions according to our re-
sults.

We also identified several bacterial taxa whose abundance in-
creased with that of P. viticola. These strains belong to the gen-
era Streptomyces, Bacillus, Pantoea, Pseudomonas, and Sphingomonas,
most of which contain strains known for their biocontrol activ-
ity against grapevine downy mildew (Compant et al. 2013, El-
Sharkawy et al. 2018, Bruisson et al. 2019). In particular, Bacillus
species are well known for their biocontrol activities, through di-
rect antibiosis, competition for niches and nutrients and induc-
tion of host systemic resistance (Compant et al. 2013). They pro-
duce various bioactive compounds, such as surfactin, iturin, and
fengycin, which display strong suppressive effects on a wide range
of pathogens (Liet al. 2019). The application of live strains of Strep-
tomyces or Bacillus bacteria, or their extracts, has been shown to
reduce disease severity (El-Sharkawy et al. 2018, Li et al. 2019 )
by inhibiting and lysing zoospores (Abdalla et al. 2011), disrupting
zoospores motility (Islam et al. 2016, Raveau et al. 2024)), and dam-
aging sporangia and sporangiophores (Liang et al. 2016). Pantoea
agglomerans and Sphingomonas zeae are also considered potential
antagonists of P. viticola according to in vitro confrontation tests
(Bruisson et al. 2019).

To our knowledge, our study is the only one to specifically in-
vestigate the microbiota in grapevine downy mildew lesions using
metabarcoding, and to directly compare microbial communities

between symptomatic and asymptomatic tissues of the same leaf.
Other studies have compared grapevine microbiota composition
under conditions of low versus high downy mildew abundance,
but their experimental designs differed substantially. The com-
parisons were carried out either between resistant and suscepti-
ble grapevine cultivars (Wicaksono et al. 2023, Duret et al. 2025),
between treated and untreated plants during a downy mildew epi-
demic (Duret et al. 2025), between plants from plots with histor-
ically low or high incidence and severity of the disease (Fournier
et al. 2025), or between different levels of disease severity (Per-
azzolli et al. 2014). These studies mainly focused on the bacte-
rial microbiota (Supplementary Tables S3) and identified several
genera that were significantly more abundant under each of the
compared conditions (Supplementary Tables S3 and S4). For ex-
ample, several bacterial genera were reported as more abundant
under low downy mildew abundance, including Paracoccus and
Altererythrobacter, which were negatively correlated with disease
severity (Perazzolli et al. 2014) and enriched in resistant culti-
vars (Wicaksono et al. 2023, Duret et al. 2025). Similarly, Rosemonas
was negatively correlated with downy mildew severity (Perazzolli
et al. 2014) and enriched in plots with historically low levels of
disease (Fournier et al. 2025). These findings are consistent with
our results, as we also found these taxa to be more abundant in
asymptomatic tissues. In addition, Duret et al., (2025) identified
bacterial taxa with potential biocontrol activity under both con-
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ditions, supporting the hypothesis that high downy mildew abun-
dance could also serve as a reservoir of biocontrol agents. Over-
all, further comparisons among studies remain challenging due
to differences in plant organs analyzed and experimental designs
(Supplementary Tables S3 and S4).

The plant host does not lose control of its
microbiota in disease lesions, in contrast to
ecological theories

Moreover, in contrast with our initial hypothesis H2, our results
suggest that the plant host does not lose control of its micro-
biota in diseased tissues, at least for fungi. Fungal and bacte-
rial biomass did not increase in disease lesions but rather de-
creased, and the processes driving community assembly became
more deterministic. Homogeneous selection of fungal commu-
nities slightly increased in disease lesions compared to asymp-
tomatic tissues, suggesting that infection altered fungal commu-
nities in a similar way among all vine plants across the three ge-
ographic regions. These deterministic and convergent changes in
fungal communities in disease lesions could result from environ-
mental filtering imposed by changes in leaf structure, physiology
and chemistry. Indeed, leaf infection by P. viticola manifests as yel-
low and oily spots on the leaves, which evolve into necrotic tissues
(Gessler et al. 2011) and trigger significant changes in the concen-
tration and spatial distribution of several micro- and macronutri-
ents (Cesco et al. 2020). Alternatively, the deterministic and con-
vergent changes in fungal communities in disease lesions could
result from the active selection of specific microorganisms by
the plant in response to infection-induced stress (Teixeira et al.
2019). This pattern is consistent with the “cry-for-help” hypothe-
sis, whereby plants actively recruit beneficial microbes—such as
biocontrol-active fungi—in response to biotic stress to fight or re-
sist stress (Raaijmakers and Mazzola 2016, Rizaludin et al. 2021).

Overall, our analysis of microbiota assembly processes did not
support the Anna Karenina Principle (AKP). Fungal communities
in disease lesions are not more dissimilar from each other (i.e. they
are not more dispersed) than are communities in asymptomatic
tissues, a pattern that is usually used to support the AKP (Ahmed
et al. 2019, Bonthond et al. 2023, Arnault et al. 2023). Moreover,
changes in fungal communities between asymptomatic tissues
and disease lesions did not correspond to any of the theoretical
scenarios proposed by (Arnault et al. 2023), as we did not detect
an increase in stochastic processes in disease lesions (AKP pat-
tern) or a shift between predominantly heterogeneous and homo-
geneous selection (anti-AKP pattern). The bacterial communities
were driven mostly by stochastic processes, regardless of the leaf
tissue condition (symptomatic or asymptomatic), suggesting that
the bacterial communities were loosely controlled by the plant
under both conditions.

Perspectives

One of the most promising findings from our study, which shifts
our initial approach, is that symptomatic tissues serve as a valu-
able reservoir for protective fungal and bacterial microorganisms.
The discovery of a significant number of biocontrol agents in
downy mildew lesions, from both fungal and bacterial kingdoms,
opens exciting new avenues for exploring their complementarity
in biological control. With the growing interest in bacterial-fungal
interactions, designing SynComs (Synthetic Microbial Communi-
ties) that integrate both fungal and bacterial candidates hold the
potential to uncover powerful synergies between these organisms,
which could significantly advance biocontrol strategies. To fully
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realize this potential, enhancing the taxonomic assignment of
key bacterial ASVs is essential. Multiomics approaches, combin-
ing metagenomics, metatranscriptomics and metabolomics, offer
promising solutions capable of dramatically improving the preci-
sion of bacterial identification and potentially revealing the pre-
cise identities of Bacillus, Streptomyces, and Sphingomonas found in
lesions. In addition, these methods would enable us to elucidate
the metabolites produced and exchanged in the lesion (Crandall
et al. 2020) to develop a mechanistic scenario of interactions be-
tween fungi, bacteria and the pathogenic oomycete P. viticola.

Data availability

Absolute abundance data for fungi and bacteria are available
from Recherche Data Gouv under the DOI [https://doi.org/10.
57745/H2GJQA]. Other data were published in Barroso-Bergada et
al. (2023a) and are available on Recherche Data Gouv under the
DOI [https://doi.org/10.15454/2YDSBL]. All R scripts developed in
this study are available on Recherche Data Gouv under the DOI
[https://doi.org/10.57745/3DVHRH].
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