
FEMS Microbiology Ecology , 2025, 101 , fiaf111 

DOI: 10.1093/femsec/fiaf111 
Advance access publication date: 6 November 2025 

Research Article 

A new scenario of pathogen-microbiota interactions 

involving the oomycete Plasmopara viticola 

Paola Fournier 1 , Lucile Pellan 

2 , Julie Aubert 3 , Patrice This 4 , Corinne Vacher 1 ,* 

1 INRAE, Bordeaux Sciences Agro, ISVV, SAVE, 33882 Villenave-d’Ornon, France 
2 Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), Université de Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France 
3 Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA-Paris-Saclay, 91120 Palaiseau, France 
4 UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France 
∗Corresponding author: INRAE, Bordeaux Sciences Agro, ISVV, SAVE, 33882 Villenave-d’Ornon, France. E-mail: corinne.vacher@inrae.fr 
Editor: Angela Sessitsch 

Abstract 

A key question in microbial ecology is how the microbiota regulates host invasion by pathogens. Several ecological theories link the 
diversity, abundance and assembly processes of the microbiota with its resistance to invasion, but the specific properties of microbial 
communities that confer protection to the host are poorly understood. 
We addressed this question for the oomycete Plasmopara viticola , the causal agent of grapevine downy mildew. Using state-of-the-art 
microbial ecology methods, we compared microbial communities associated with asymptomatic and symptomatic leaf tissues to 
elucidate pathogen-microbiota interactions. 
Despite visible symptoms, P. viticola infection induced only subtle changes in microbial community composition. Symptomatic tissues 
showed enrichment in basidiomycete yeasts and Bacillus species, both known for their biocontrol activity, and exhibited a higher de- 
gree of determinism in community assembly processes. Asymptomatic tissues hosted more diverse microbiota, but lacked consistent 
associations with known biocontrol agents. Instead, they were often associated with other airborne grapevine pathogens. 
These findings suggest a novel interaction scenario: upon infection, P. viticola reshapes locally the leaf microbiota, excluding other 
pathogens and selecting for beneficial microbes. Although further studies are needed to uncover the underlying mechanisms, these 
findings underscore the relevance of targeting disease lesions in the search for protective microbial consortia. 

Keywords: biocontrol; community ecology; Grapevine downy mildew; host–microbiota–pathogen interactions; microbial community 
assembly 
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Introduction 

The role of the microbiota in the emergence and spread of dis- 
eases has long been overlooked. However, the intricate interac- 
tions between hosts, pathogens and the microbiota are now cen- 
tral to disease research, as host resistance to diseases is, at least 
in part, driven by the composition of the microbiota and the occu- 
pation of the microbial niche (Vannier et al. 2019 , Liu et al. 2020 ,
Ping et al. 2024 ). This growing awareness has spurred the devel- 
opment of new concepts, such as disease ecology and the patho- 
biome (Vayssier-Taussat et al. 2014 , Bass et al. 2019 ), and more 
recently, the concept of a protective microbiota (Goossens et al.
2023 ). Central to this field are questions regarding how the mi- 
crobiota regulates invasion by pathogens (Teixeira et al. 2019 , Li 
et al. 2021 ) and how the host maintains microbiota homeostasis 
(Hacquard et al. 2017 , Karasov et al. 2020 , Paasch and He 2021 ). Ad- 
dressing these questions is key to fighting diseases by harnessing 
the microbiota, whether through preventive or curative inocula- 
tion of microorganisms; the use of metabolites that steer micro- 
bial ecosystem functioning; or the modulation of host physiology,
defense mechanisms, and environmental conditions (Busby et al. 
2017 , Compant et al. 2025 ). 

Over the past decade, numerous studies have compared the mi- 
crobial communities of visually healthy tissues to those of tissues 
infected by various plant pathogens, aiming to identify the proper- 
Received 27 June 2025; revised 22 September 2025; accepted 29 October 2025
© The Author(s) 2025. Published by Oxford University Press on behalf of FEMS. This
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), whic
medium, provided the original work is properly cited.
ies of the microbiota that promote or inhibit disease (Jakuschkin
t al. 2016 , Zhou et al. 2021 , Dastogeer et al. 2022 ). Several ecolog-
cal theories have been tested, including the Anna Karenina Prin-
iple (Zaneveld et al. 2017 , Arnault et al. 2023 ) and the diversity-
nvasibility hypothesis (Jousset et al. 2011 , van Elsas et al. 2012 ).
he Anna Karenina Principle (AKP) predicts that stress, whether 
iotic or abiotic, induces dysbiosis, defined as a transient loss of
he host control over its microbiota (Arnault et al. 2023 ). This loss
lters microbiota composition and function and can be both the
ause and consequence of disease symptoms. According to AKP,
ysbiosis alters the processes of microbiota assembly and man- 

fests as increased stochasticity in microbiota assembly, which 

nfluences sample dispersion (i.e. the degree of dissimilarity ob- 
erved between microbial samples) (Arnault et al. 2023 ). It is also
xpected to affect microbial α-diversity and load. Several studies 
ave suggested that the microbial load remains under host con-
rol until pathogenic species invade host tissues and that success-
ul pathogen colonization is associated with a higher microbial 
oad, either in the natural microbiota (Guo et al. 2020 , Karasov
t al. 2020 ) or in a synthetic microbial community (Wolinska et
l. 2021 ). According to the diversity-invasibility hypothesis, in- 
reased microbial diversity limits pathogen invasion (Jousset et 
l. 2011 , van Elsas et al. 2012 ) through at least four mechanisms
amely sampling effect, insurance effect, complementarity effect,
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nd synergistic effects (Hooper et al. 2005 , Saleem et al. 2019 ).
owever, both the Anna Karenina Principle and the diversity-

nvasibility relationship were recently challenged (Williams et al.
024 ). There is still a longstanding debate regarding the relation-
hip between the microbiota and host health. In this study, we
imed to advance this field by investigating the relationship be-
ween the plant microbiota and a major disease caused by a
athogenic oomycete species. 

Oomycetes cause some of the most devastating crop diseases
Derevnina et al. 2016 ). Among them, Plasmopara viticola , the
ausal agent of grapevine downy mildew was introduced to Eu-
ope in the mid-nineteenth century and devastated European
ineyards due to the high susceptibility of Vitis vinifera (Fontaine
t al. 2021 ). This foliar disease is now reported in most wine-
roducing regions of the world (Bois et al. 2017 , Fontaine et al.
021 ) and has a significant economic impact (Taylor et al. 2019 ).
everal microorganisms have been identified as potential biocon-
rol agents through experiments conducted under controlled con-
itions. These potential biocontrol agents include several bacte-
ia of the Bacillus genus (Zhang et al. 2017 , Bruisson et al. 2019 ),
s well as fungi such as Acremonium byssoides (Burruano et al.
016 ), Alternaria spp. (Musetti et al. 2006 ), Epicoccum nigrum (Ko-
tekamp 1997 ), Fusarium spp. (Ghule et al. 2018 ), and Trichoderma
pp. (Perazzolli et al. 2008 , Lazazzara et al. 2021 ). A recent study
lso discovered Simplicillium lanosoniveum , a hyperparasite specific
o P. viticola , through isolation from grapevine lesions (Shen et
l. 2022 ). In addition, Fournier et al. ( 2025 ) reported that fungi
uch as Buckleyzyma aurantiaca , Bullera alba , Trichoderma virens , and
richoderma hamatum , and bacteria like Streptomyces and Bacillus
ere more abundant in soil and phyllosphere of vineyard plots
ith historically low downy mildew symptoms. In particular, ba-

idiomycete yeasts were more abundant in the phyllosphere of
ow-disease plots. Despite these discoveries, only Bacillus amyloliq-
efaciens , is currently registered in France for controlling P. viti-
ola (“DGAL/SAS/2022–949′′ ). Consequently, there is considerable
oom for improvement in biocontrol strategies targeting grapevine
owny mildew. It would be particularly valuable to explore the
ombination of multiple biocontrol agents (Nicot et al. 2012 , Xu
nd Jeger 2020 ), building on the diversity-invasibility hypothesis
Saleem et al. 2019 ). Such combinations of microorganisms are ex-
ected to improve the efficiency and robustness of biocontrol by
roviding functional redundancy and complementarity in modes
f action (Guetsky et al. 2007 , Vega et al. 2009 , Panebianco et al.
015 ). 

This study aimed to improve microbial biocontrol strategies for
he pathogenic oomycete P. viticola by deepening our understand-
ng of pathogen-microbiota interactions during infection and by
esting debated ecological theories linking microbiota diversity to
isease development (Williams et al. 2024 ). We compared micro-
ial community in asymptomatic and symptomatic tissues of nat-
rally infected leaves to identify taxa consistently more abundant

n asymptomatic leaf tissues. We also tested three hypotheses de-
ived from ecological theories. First, we hypothesized that (H1) leaf
issues that were asymptomatic at the time of sampling during
n epidemic harbor a more diverse microbiota than symptomatic
issues do, which is consistent with the diversity-invasibility rela-
ionship (Saleem et al. 2019 ). Second, we hypothesized that (H2)
he microbial load in asymptomatic tissues is lower than that in
ymptomatic tissues, in line with the dysbiosis concept, which
osits that disease is linked to a loss of host control over its micro-
iota (Karasov et al. 2020 , Arnault et al. 2023 ). Third, we hypoth-
sized that (H3) infection increases stochasticity in microbiota
ssembly processes and alters sample dispersion, in accordance
ith the Anna Karenina principle (Zaneveld et al. 2017 , Arnault
t al. 2023 ). Our findings are discussed in the context of develop-
ng microbial biocontrol of grapevine downy mildew, with the ul-
imate goal of reducing grape growers’ reliance on chemical pesti-
ides that are harmful to both human and environmental health
Rani et al. 2021 , Mwaka et al. 2024 ). 

aterials and methods 

he experimental design and the dataset have been described in
etail in the data paper by (Barroso-Bergadà et al. 2023a ), in which
he authors presented microbial profiles and rarefaction curves.
he same dataset was also previously exploited to investigate mi-
robial interaction networks using an explainable machine learn-
ng framework, namely Abductive/Inductive Logic Programming
Barroso-Bergadà et al. 2023b ). In the present study, we extended
hese previous works by supplementing the dataset with informa-
ion on bacterial and fungal load and by providing a more compre-
ensive analysis of the microbiota. This included comparisons of
-diversity, β-diversity and microbial load between symptomatic
nd asymptomatic tissues, the detection of disease-related micro-
ial taxa using four methods of differential abundance analysis
nd TITAN, and the investigation of community assembly pro-
esses. 

xperimental design, P. viticola quantification 

nd sequencing of fungal and bacterial 
ommunities 

he acquisition of the dataset is therefore only briefly summa-
ized here, as it has already been described in detail in (Barroso-
ergadà et al. 2023a ). A total of 270 grapevine leaves were collected

n 2018 from nine vineyard plots across three major French wine-
rowing regions (Occitanie, Nouvelle-Aquitaine, hereafter referred
o as Aquitaine and Champagne) ( Supplementary Fig. S1 ). during
he peak of the grapevine downy mildew epidemic. From each leaf,
iscs were cut from both symptomatic (visibly sporulating and
on-necrotic lesions) and asymptomatic areas, and freeze-dried.
otal DNA was extracted and sequenced on an Illumina MiSeq
latform to characterize fungal (nrDNA ITS gene) and bacterial

16S rRNA gene) communities. Sequence processing involved the
ADA2 pipeline (Callahan et al. 2016 ), taxonomic assignment us-

ng UNITE All Eukaryotes v8.3 (Abarenkov et al. 2021 ) and SILVA
138.1 (Quast et al. 2013 ) and clustering using the LULU algorithm
Frøslev et al. 2017 ). The DNA concentration of P. viticola was quan-
ified across all samples with quantitative real-time PCR targeting
he ITS1. The concentration was then divided by the total DNA
oncentration, assumed to consist mainly of leaf DNA, to express
he result as ng of P. viticola DNA per μg of leaf DNA. 

uantification of microbial load 

n the present study, we provided a new layer of information
y quantifying microbial load across all samples using digital
roplet PCR assays (ddPCR™; Hindson et al. 2011 ). Microbial load
as defined as the absolute quantity of microbial DNA, serving
s a proxy for microbial biomass. The ddPCR assays were con-
ucted with the QX200 Droplet Digital PCR System from Bio-Rad
t the Genome Transcriptome Facility of Bordeaux (France). The
rimers and probes were synthesized by Integral DNA Technolo-
ies with probes labeled with 5′ 6-FAM, an Internal ZENTM and
′ IBFQ quenchers. 

Fungal DNA was amplified using the universal fungal primer
air ITS86F (5′ -GTGAATCATCGAATCTTTGAA-3′ ) and ITS4 (5′ -

https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
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TCCTCCGCTTATTGATATGC-3′ ) as recommended by Beeck et al. 
( 2014 ). In addition to amplifying fungal sequences, these primers 
also amplify oomycete sequences, including those of Plasmopara 
viticola , as confirmed by in silico BLAST analyses and confirmed 

through PCR assays performed in our laboratory (data not shown).
PCRs were carried out in a final volume of 22 μl using the ddPCR™
EvaGreen Supermix (Bio-Rad, USA) with 11 μl of 2X EvaGreen Su- 
permix, 1.83 μL of each primer at 1.5 μM and 2 μL of DNA tem- 
plate or ultrapure water as the negative control. A DNA extract of 
Phaeomoniella chlamydospora, a pathogenic fungus responsible for 
Esca disease in grapevine (González-Domínguez et al. 2020 ), was 
used as a positive control. 

Bacterial DNA was amplified using the universal bacte- 
rial primer pair F_Bact 1369 (5′ -CGGTGAATACGTTCCCGG- 
3′ ), R_Prok1492 (5′ -TACGGCTACCTTGTTACGACTT-3′ ) and the 
P_TM1389F (5′ -CTTGTACACACCGCCCGTC-3′ ) as recommended 

by Furet et al. ( 2009 ). PCRs were conducted in a final volume of 
22 μl using the ddPCR™ Supermix for Probes No dUTP (Bio-Rad,
USA), with 11 μl of 2X Supermix, 2.2 μL of each primer at 9 μM,
1.22 μL of probe at 9 μM and 2 μL of DNA template or ultrapure 
water in the negative control. The positive control was the DNA of 
a mock community composed of 14 bacterial strains ( Streptococcus 
mitis, Streptococcus oralis, Pseudomonas aeruginosa, Stenotrophomonas 
maltophilia, Staphylococcus epidermidis, Staphylococcus aureus, Acine- 
tobacter baumannii, Klebsiella pneumoniae, Proteus mirabilis, Serratia 
marcescens, Lactobacillus, Escherichia coli (ATCC 25922) , Enterobacter 
cloacae, and Enterococcus faecalis (ATCC 29212)). 

For both groups, 20 μL of mixture containing the sample was 
partitioned into droplets with a QX200 Droplet Generator and then 

transferred to 96-well PCR plates. PCRs were performed in a Bio- 
Rad C1000 (Bio-Rad, USA) instrument with the following parame- 
ters: [95 ◦C × 5 min; 40 cycles of 95 ◦C × 30 s, 55 ◦C × 1 min, and 

72 ◦C × 30 s; 4 ◦C × 5 min, 90 ◦C × 5 min] for fungi; and [95 ◦C ×
5 min; 40 cycles of 95 ◦C × 30 s, 60 ◦C × 1 min; and 98 ◦C × 10 min] 
for bacteria. The QX200 droplet reader analyzed each droplet in- 
dividually to detect the fluorescence signal. The number of copies 
of the target sequence per microliter of extracted DNA was calcu- 
lated from the number of positive droplets (out of an average of 
∼20k droplets per sample). The estimated load was then obtained 

by multiplying the obtained concentration (expressed as the num- 
ber of copies/μl) by the mix volume sample/buffer (x11) and after 
adjusting for the 1/100 dilution of the DNA extract. The number of 
copies was then divided by the total DNA concentration, assumed 

to consist mainly of leaf DNA, to express it as number of copies 
per μg of leaf DNA. 

Statistical analysis 

All the statistical analyses were performed with R v4.2.3 (R Core 
Team 2023 ). Microbial community analyses were performed us- 
ing the R packages phyloseq v1.48.0 (McMurdie and Holmes 2013 ) 
and speedyseq v0.5.3.9018 (McLaren 2020 ), and all figures were gen- 
erated using the ggplot2 v3 package. 5.1 (Wickham 2016 ), cowplot 
v1.1.3 (Wilke 2024 ), ggh4x v0.2.8 (van den Brand 2024 ), ggsignif 
v0.6.4 (Ahlmann-Eltze and Patil 2021 ), patchwork v1.2.0 (Pedersen 

2024 ), microViz v0.10.8 (Barnett et al. 2021 ), and ggtext v0.1.2 (Wilke 
and Wiernik 2022 ). 

Data preparation 

Microbial community analyses were either based on the sample 
× ASV raw count matrices available from Barroso-Bergadà et al. 
( 2023a ), or on matrices transformed to account for compositional 
effects. The compositional effects were accounted for by trans- 
orming the raw sequence counts using the centered log-ratio 
CLR) transformation (Gloor et al. 2017 ). Prior to the CLR transfor-

ation, we applied a Bayesian multiplicative treatment of zeros 
sing the cmultRepl function of the zComposition package v1.5.0.3 

Palarea-Albaladejo and Martín-Fernández 2015 ). This function 

onverts zero counts, which would lead to errors in the log ratios,
nto estimates close to zero, assuming that these zeros are due to
ndersampling rather than absence. It also drops rows (ASVs) or
olumns (samples) with more than 80% zeros or missing data. 

To construct phylogenetic trees of ASVs, we first performed 

ultiple sequence alignment using the AlignSeqs function of the 
ECIPHER v2.26.0 package (Wright 2016 ). Next, the phylogenetic 
istance matrix was calculated via maximum likelihood using the 
ist.ml of the package phangorn v2.11.1 (Schliep 2011 , Schliep et al.
016 ), and the tree was built using the Neighbor-Joining method
 NJ option of the phangorn package). Finally, we evaluated the phy-
ogenetic tree’s likelihood in relation to the alignment and chosen
 model using the pml function of the phangorn package. 

omparison of P. viticola abundance between 

symptomatic and symptomatic leaf tissues 
irst, we verified that leaf tissues classified as symptomatic based
n visual observations contained a higher DNA amount of P. viti-
ola than tissues classified as asymptomatic based on qPCR data
available from Barroso-Bergadà et al. ( 2023a ), by using a pairwise

ilcoxon test. The alternative hypothesis that the DNA amount 
f P. viticola is higher in asymptomatic tissues was tested by us-
ng the alternative argument = “greater” in the pairwise.wilcox.test 
unction of the package stats v4.2.3 (R Core Team 2023 ). 

nalysis of factors driving variation in leaf microbiota 

omposition 

rincipal Component Analysis (PCA) was applied to the sample ×
SV CLR-transformed matrix to visualize variation in microbial 
ommunity composition, using the microViz package. We identi- 
ed key factors influencing community composition using vari- 
nce partitioning and Redundancy Analysis (RDA) implemented 

sing the varpart and rda functions of the vegan package v2.6.4
Oksanen et al. 2024 ), respectively. Nine explanatory factors were 
sed in both analyses. For variance partitioning, we categorized 

he data into three groups: Disease, Geography and Variety. The
Disease’ category represented infection by P. viticola and included
wo variables: the P. viticola DNA concentration estimated by qPCR
in ng/μl) and visual assessments of downy mildew symptoms 
asymptomatic or symptomatic leaf samples). The ‘Variety’ cate- 
ory comprised a single variable, representing the grapevine va- 
iety. This variable had seven modalities, corresponding to the 
rape varieties (Chasan, Chardonnay, Gamay, Merlot, Cabernet 
ranc, Meunier, Pinot Noir) included in the experiment (Barroso- 
ergadà et al. 2023a ). The ‘Geography’ category represented the 
ample location and consisted of six variables. The first variable
as the vine leaf number from which the leaf discs were sam-
led. This variable was used to take into account the pairing be-
ween symptomatic and asymptomatic tissue samples collected 

rom the same leaf. The five other variables were the Principal
oordinates of the Neighbourhood Matrix (PCNM; Borcard and 

egendre 2002 ), which represents the spatial distribution of the
ine vineyard plots included in the experiment (Barroso-Bergadà
t al. 2023a ). The PCNMs were generated by (1) calculating a Eu-
lidean distance matrix between all samples using their spatial 
oordinates (longitude and latitude) with the distance function of 
he vegan package and (2) applying the pcnm function of the ve-
an package to perform Principal Coordinates Analysis (PCoA) on 
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he truncated matrix, which provided the eigenvectors associated
ith positive eigenvalues—the PCNMs—that we used as spatial
redictors in the RDA. The PCNMs captured both the higher prox-

mity of samples collected from the same plot (plot effect) and
he higher proximity of samples collected from the same wine-
roducing region (region effect). For both variance partitioning
nd RDA, the sample x ASV CLR-transformed matrix was used
s the response variable. Nonnumeric explanatory variables were
reated as dummy variables, and all variables were standardized
sing the scale function (package base v4.2.3 (R Core Team 2023 )).
or the RDA, an automatic stepwise selection of explanatory vari-
bles, both forward and backward, was performed using the ordis-
ep function of the vegan package. Finally, an RDA was performed
ith all selected explanatory variables included as constraints.

ermutation tests were performed using the anova.cca function of
he vegan package to assess the significance of the fitted models
nd to evaluate the marginal effects of the constraints. 

dentification of microbial taxa specific to asymptomatic 
nd symptomatic leaf samples 
o determine whether asymptomatic and symptomatic samples
xhibited higher abundances of specific microbial taxa, we used
 set of four Differential Abundance Analysis (DAA) methods:
NCOM-BC2 (Lin and Peddada 2024 ), Maaslin2 (Mallick et al.
021 ), LinDA (Zhou et al. 2022 ) and ZicoSeq (Yang and Chen 2022 ).
e selected these methods recommended in recent methodolog-

cal studies for the following reasons: they were specifically de-
eloped for microbiota analysis by explicitly accounting for zero
nflation and compositional effects; they allow the specification
f random and covariate effects (Nearing et al. 2022 , Yang and
hen 2022 , 2023 , Regueira-Iglesias et al. 2023 ). This set of four
AAs was used to compare ASV abundances between asymp-

omatic and symptomatic samples while accounting for micro-
ial community variation among plots. For all four methods, the
lot and leaf number from which the symptomatic and asymp-
omatic samples were taken were included as random factors. The
arameters were set to defaults except for the minimum preva-

ence threshold, which was set to 10%, and the adjusted p value
or an ASV to be considered differentially abundant, which was set
o 0.05. All analyses were performed using the sample × ASV raw
ount matrix. They were performed using the ANCOMBC v2.0.3
Lin and Peddada 2020 , Lin et al. 2022 ), Maaslin2 v1.12.0 (Mallick
t al. 2021 ), GUniFrac v1.8 (Chen et al. 2023 ), and MicrobiomeStat
1.2 (Zhang et al. 2024 ) packages. For each ASV identified as dif-
erentially abundant by at least one of the four DAA methods, we
alculated two scores, as described in Fournier et al. ( 2025 ): (1)
he number of methods that identified this ASV as differentially
bundant, ranging from 1 to 4, and (2) the average association co-
fficient across the methods. To calculate the average association
oefficient, the coefficients provided by each DAA method were
tandardized between 0 and 1 when the ASV was more abundant
n asymptomatic samples and between 0 and -1 when the ASV
as more abundant in symptomatic samples before calculating

he average coefficient across the methods. 
In addition, we identified the microbial taxa whose relative

bundance covaries with the total DNA concentration of P. viticola
n leaf samples, as determined by qPCR values, using the Thresh-
ld Indicator Taxa ANalysis (TITAN) method of the TITAN2 pack-
ge v2.4.3 (Baker et al. 2023 ). For this analysis, we used the sample
 ASV raw count matrix, keeping only ASVs with more than 100
eads in total and present in at least 3 samples, as required by TI-
AN. The method identified ASVs whose abundance increased as
he P. viticola DNA concentration decreased and ASVs whose abun-
ance increased as the P. viticola DNA concentration increased.
hese ASVs are hereafter referred to as indicators of low and high
. viticola DNA concentrations in leaves. To evaluate the strength
f the relationship, we used the standardized Indicator Value (In-
Val) score defined by Dufrêne and Legendre ( 1997 ) expressed as
 z score. 

esting Hypothesis H1: is microbiota α-diversity higher in 

eaf tissues that were asymptomatic at the time of 
ampling during the epidemic than in disease lesion? 
o assess whether the α-diversity of the leaf microbial communi-
ies was higher in asymptomatic leaf tissues than in symptomatic
eaf tissues, we calculated three diversity indices. These indices
re part of the Hill number framework (Chao et al. 2014 ), which
ncludes a parameter q that determines the sensitivity of the in-
ices to the relative abundance of ASVs. This framework gives

ess weight to rare ASVs as q increases. The Hill number corre-
ponding to q = 0 represents the richness of ASVs, where each ASV
ounts for 1 regardless of its relative abundance. The Hill number
orresponding to q = 1 is the exponential of Shannon’s entropy
ndex (Shannon 1948 ), where the weight of each ASV is propor-
ional to its relative abundance. The Hill number corresponding
o q = 2 is the inverse of Simpson’s concentration index (Simp-
on 1949 ), which disproportionately favors abundant ASVs and
s particularly relevant for metabarcoding data, as rare ASVs of-
en correspond to artifacts, and their inclusion can lead to erro-
eous ecological conclusions (Taberlet et al. 2018 ). The three in-
ices were calculated from the sample × ASV raw count matrix
sing the ChaoRichness , ChaoShannon , and ChaoSimpson functions

n the iNEXT v3.0.1 package (Chao et al. 2014 , Hsieh and Chao
024 ). Microbiota diversity was compared between asymptomatic
nd symptomatic leaf samples using linear mixed-effects mod-
ls. We built six models, each corresponding to a combination of
he microbial kingdom (bacteria or fungi) and the α-diversity in-
ex ( q = 1, 2 or 3). These models included visual assessments of
owny mildew symptoms (asymptomatic vs. symptomatic leaf
amples) as a fixed effect and leaf number as a random effect
o consider the pairing of symptomatic and asymptomatic sam-
les taken from the same leaf. Additional fixed effects, such as
rapevine variety, plot, and region, were also included to con-
rol for potential confounding factors affecting microbial diversity.
raphical checks for homoscedasticity and normality of residuals
ere performed using the packages performance v0.12.0 (Lüdecke

t al. 2021 ) and DHARMa v0.4.6 (Hartig and Lohse 2022 ). Model
onstruction and evaluation were conducted using the packages
merTest v3.1.3 (Kuznetsova et al. 2017 ) and car v3.1.2 (Fox and

eisberg 2018 ). When explanatory factors with more than two
evels were significant, post hoc tests were conducted using the
mmeans function of the emmeans v1.10.1 package (Lenth et al.
024 ) to estimate marginal means for each factor level. To ad-
ust for multiple comparisons, we applied the Bonferroni method
sing the pairs function of the graphics v4.2.3 package. Finally,
he means were ranked in descending order, and groupings were
dentified using the cld function of the lsmeans v2.30.0 package
Lenth 2016 ) to highlight significant differences between factor
evels. 

esting Hypothesis H2: do fungal and bacterial loads 
ncrease in disease lesions caused by the oomycete P. 
iticola, suggesting a loss of plant control over its 
icrobiota? 

inear mixed-effects models were also used to compare micro-
ial loads measured by digital droplet PCR between asymptomatic
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and symptomatic leaf samples. We built two models, one for each 

microbial kingdom (bacteria or fungi). The models included vi- 
sual assessments of downy mildew symptoms (asymptomatic vs. 
symptomatic leaf samples) as a fixed effect and leaf as a random 

effect to consider the pairing of symptomatic and asymptomatic 
samples taken from the same leaf. Additional fixed effects, such 

as grapevine variety, plot, and region. Model evaluation was per- 
formed as described above. 

Testing Hypothesis H3: does infection increase stochasticity 

in microbiota assembly processes and alter sample 
dispersion, in accordance with the Anna Karenina 

principle? 
We quantified the ecological processes driving microbial com- 
munity assembly in both asymptomatic and symptomatic tis- 
sues, using the β-nearest-taxon index ( βNTI) and the normalized 

stochasticity ratio (NST). The βNTI (Stegen et al. 2012 ) quanti- 
fies phylogenetic turnover between site pairs by comparing ob- 
served mean nearest taxon distances ( βMNTDs) to null expecta- 
tions, thereby distinguishing stochastic from deterministic com- 
munity assembly processes. The NST (Ning et al. 2019 ) estimates 
the relative influence of stochasticity by comparing observed 

community similarity to that expected under null models, yield- 
ing a normalized value indicative of stochastic or deterministic 
structuring. 

We calculated their values for every sample following the pro- 
cedures described by Barnett et al. ( 2020 ) and Ning et al. ( 2019 ),
and we performed all the statistical tests according to their out- 
lined methods. For NST calculation, we used the function pNST,
which estimates NST on the basis of phylogenetic beta diversity 
(Guo et al. 2018 , Ning et al. 2019 ), which we estimated using the 
β-mean-nearest-taxon distance ( βMNTD). This method has been 

shown to perform better in stochasticity estimation than NST 

based on taxonomic dissimilarity indices in several cases (Ning 
et al. 2020 ). 

According to Stegen et al. ( 2013 ), β-NTI values between –2 and 

2 indicate a dominance of stochastic processes, whereas | β-NTI | 
> 2 reveals the dominance of deterministic processes. NST values 
classify community assembly as more stochastic ( > 50%) or more 
deterministic ( < 50%) (Ning et al. 2019 ). To compare βNTI values 
between symptomatic and asymptomatic leaf samples, we per- 
formed a Kruskal-Wallis test. NST values were compared between 

the two groups using bootstrap resampling ( nst.boot function from 

the NST package). 
To evaluate the effect of disease symptoms on sample disper- 

sion, we first calculated the weighted UniFrac distance as a β- 
diversity index using the distance function in the phyloseq pack- 
age. We then quantified the sample dispersion by calculating the 
distance of each sample to its group centroid using the betadis- 
per function from the vegan package (comparing symptomatic and 

asymptomatic tissues). Differences in dispersion between groups 
were tested for statistical significance using the permutest func- 
tion, also from the same package. 

Results 

Our results complement and extend previous analyses of the 
same dataset, which included microbial community profiles 
(Barroso-Bergadà et al. 2023a ), and illustrated a new network 
learning method using the fungal dataset (Barroso-Bergadà et al. 
2023b ). 
PCR data confirm minimal infection of 
symptomatic tissues by P. viticola 

s expected, the DNA amount of P. viticola was significantly lower
n asymptomatic leaf tissues than in symptomatic leaf tissues 
paired Wilcoxon test, p < 0.001, n = 446) ( Supplementary Fig. S2 ).
n asymptomatic tissues, the P. viticola DNA amount was very low
ith a median value of 0.07 ng per μg of leaf DNA, and there was
inimal variability among samples ( Supplementary Fig. S2 ). In

isease lesions, however, the P. viticola DNA amount was signifi-
antly higher, with a median value of 193 ng/μg and there was
onsiderable variability among samples ( Supplementary Fig. S2 ).
 few samples showed similarly low levels to those found in
symptomatic tissues. Conversely, a small number of asymp- 
omatic samples showed measurable levels of P. viticola DNA, in
ome cases comparable to those observed in symptomatic tissues.
hese results support the relevance of classifying samples into 
wo categories (asymptomatic vs . symptomatic) based on visual 
bservations of symptoms while also highlighting both a gradi- 
nt of P. viticola DNA amount within symptomatic tissues—which
ay reflect different stages of infection—and the occasional de- 

ection of high levels of pathogenic DNA in visually asymptomatic 
amples. 

eography, and to a lesser extent grapevine 

ariety, have more influence on microbiota 

omposition than infection by downy mildew 

ungal communities of grapevine leaves were spatially struc- 
ured, with marked differences in composition among the three 
ine-producing regions (Figs. 1 A and 3 A and Supplementary
ig. S3A ). Geography was the main driver of fungal community
ariation, accounting for 36.82% of the variance, followed by 
rapevine variety (6.16%) and infection by downy mildew (0.59%) 
 Supplementary Fig. S4A ). According to the redundancy analysis
RDA), all three factors had a significant effect ( Supplementary
able S1 ). The bacterial communities were less spatially struc-
ured than the fungal communities were but still exhibited re-
ional variation across the three wine-producing regions (Fig. 1 B;
upplementary Fig. S3B ). Geography was also the main driver of
ariation in bacterial community composition, explaining 15.06% 

f the variance, followed by grapevine variety (3.31%) and infec-
ion by downy mildew (0.51%) ( Supplementary Fig. S4B ). How-
ver, according to the redundancy analysis (RDA), only geog- 
aphy had a significant effect on the bacterial communities 
 Supplementary Table S1 ). Importantly, however, the grapevine 
ariety was not uniformly distributed across regions: each vari- 
ty was sampled in a single plot, except for Chardonnay (which
as sampled in Occitanie and Champagne) and Merlot (which 

as sampled in two plots in Aquitaine). Consequently, the ef-
ect of grapevine variety may be partially confounded by plot
r regional effects in both fungal and bacterial community 
nalyses. 

Fungal community profiles varied between southern (Occi- 
anie) and northern (Champagne) regions of France (Fig. 2 A),
ith a marked shift from higher proportions of Basidiomycetes—
articularly the Tremellomycetes class—in southern France to in- 
reased proportions of Ascomycetes, especially Dothideomycetes,
n northern France. The most abundant fungal species were gen-
rally shared across regions (Table 1 ), but their total relative
bundance varied with the South to North gradient: they rep-
esented 40.8% of the species in Occitanie, 60.6% in Aquitaine
nd 86.8% in Champagne. In addition, their relative abundances 

https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
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Figure 1. Variation in the microbial community composition of grapevine leaves sampled during a downy mildew epidemic across three French 
wine-growing regions. Compositional dissimilarities between (A) fungal and (B) bacterial communities of grapevine leaves, represented by a Principal 
Component Analysis (PCA). Samples collected from the same wine-growing region are represented with the same color and are enclosed within an 
ellipse. Symbols indicate leaf tissue status: circles for asymptomatic leaves and triangles for downy mildew-symptomatic ones. 
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aried between regions. Among the top 10 most abundant fungal
pecies present in the 3 regions were the basidiomycete yeasts
ilobasidium chernovii , Filobasidium oeirense , Vishniacozyma victoriae ,
nd Sporobolomyces roseus , as well as the ascomycetes Cladospo-
ium delicatulum and Mycosphaerella tassiana . The latter increased

arkedly in abundance from South to North (7.07% in Occi-
anie, 9.88% in Aquitaine, and 48.10% in Champagne), contribut-
ng significantly to the higher proportion of Ascomycetes in the
orthern region. Other species, such as Filobasidium wieringae , Al-

ernaria metachromatica , and Stemphylium solani , were among the
op 10 in two of the three regions. Other species, such as Phebia
ufa and Vishniacozyma carnescens in Occitanie, Itersonilia pannonica
nd Udeniomyces pyricola in Aquitaine or Dioszegia hungarica and
ulleromyces albus in Champagne, were present in only one region.
espite similarities in the core bacterial genera across regions, the

elative abundance of the dominant taxa varied geographically.
he genera Sphingomonas , Frigobacterium , Pantoea , Curtobacterium ,
nd Methylobacterium were consistently among the top 10 most
bundant genera across all three regions (Table 2 ). Notably, Sph-

ngomonas decreased in abundance from South to North (36.95%
n Occitanie, 24.20% in Aquitaine, and 6.46% in Champagne), re-
ecting a regional gradient similar to that observed for fungal
axa. 

ome fungi, but not bacteria, are consistently 

ore abundant in asymptomatic leaf tissues 

cross wine-producing regions 

ifferential abundance analysis (DAA) conducted at the national
evel (i.e. using the full dataset combining all three regions) iden-
ified 22 fungal ASVs that were significantly more abundant in
symptomatic leaf tissues ( Supplementary File S2 ), whereas TI-
AN identified 78 fungal ASVs whose abundance was negatively
orrelated with the DNA concentration of P. viticola in leaf tissues
 Supplementary File S3 ). Seventeen fungal ASVs were identified by
oth DAA and TITAN (Fig. 3 ), all of which belong to the Ascomy-
ota phylum (Fig. 4 ). To assess region-specific patterns, DAAs were
hen performed separately on each regional dataset. These results
evealed that both Occitanie and Aquitaine harbored distinct sets
f fungal taxa that were more abundant in asymptomatic tissues
 Figs. S4 and S5 ), whereas no such taxa were detected in Cham-
agne ( Fig. S6 ). Interestingly, at the national scale, two fungal
SVs assigned to pathogenic genera, Erysiphe (ASV36) and Botry-

is (ASV208), were significantly more abundant in asymptomatic
issues when considering the full dataset encompassing all three
egions (Fig. 3 ). Similar patterns emerged from the regional anal-
ses: Botrytis (ASV208) was more abundant in asymptomatic tis-
ues in both Occitanie and Aquitaine, while Erysiphe (ASV36) was
ore abundant in asymptomatic tissues in Aquitaine ( Figs. S5 and

6 ). 
In contrast, DAA conducted at the national level did not

dentify any bacterial ASVs that were significantly more abun-
ant in asymptomatic leaf tissues ( Supplementary File S2 and
upplementary Fig. S8 ). However, TITAN identified 33 bacterial
SVs whose abundance was negatively correlated with the DNA
oncentration of P. viticola in leaf tissues ( Supplementary File S3 ;
ig. 5 ). When applied separately to each regional dataset, DAA
dentified three bacterial ASVs that were significantly more abun-
ant in asymptomatic tissues in the Occitanie region: one as-
igned to the Pseudokineococcus genus and two to the Methylobac-
erium genus ( Supplementary Fig. S9 ). 

https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
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Figure 2. Microbial community profiles of grapevine leaves according to geographic region and leaf tissue status (asymptomatic vs. downy 
mildew-symptomatic). (A) Fungal and (B) bacterial community profiles in asymptomatic and downy mildew-symptomatic grapevine leaf discs 
collected during the peak of the downy mildew epidemic across nine plots (A–I) in three French wine-growing regions: Occitanie, Aquitaine and 
Champagne (Fig. 1 ). The relative abundances of fungal classes and bacterial phyla are averaged over the 30 samples collected for each condition. In 
the fungal community profiles, the Ascomycota classes are represented by a pink gradient, whereas the Basidiomycota classes are represented by a 
blue gradient. 
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Basidiomycetous yeasts and Bacillales increase 

in abundance in disease lesions of P. viticola 

DAA conducted at the national level revealed that 11 fungal 
ASVs were significantly more abundant in disease lesions, all 
of which were basidiomycetous yeasts. These genera included 

Bulleromyces albus , Cryptococcus laurentii , Curvibasidium cygneicollum ,
Cystofilobasidium macerans, Filobasidium wieringae, Holtermanniella 
wattica, Sporobolomyces patagonicus , Sporobolomyces roseus (repre- 
sented by three different ASVs), and Udeniomyces pyricola (Fig. 3 ).
Eight of these ASVs were also identified as significant by TITAN 

(Fig. 3 and Fig. 4 ). This predominance of basidiomycetous yeasts 
in symptomatic tissues was consistently observed when analyses 
were conducted at the regional scale ( Supplementary Figs. S6 - S7 ),
particularly in Aquitaine, where 8 out of 9 differentially abundant 
ASVs were assigned to this group. Five of these ASVs were also 
significant according to TITAN ( Supplementary Fig. S6 ). Notably,
Sporobolomyces roseus was consistently found to be significantly 
more abundant in disease lesions, both across all regions and 

within individual regions, except for Occitanie, where no fungal 
SVs were identified as more abundant in disease lesions (Fig. 3
nd Supplementary Figs. S5 - S7 ). 

DAAs revealed that only a few bacterial ASVs were signifi-
antly more abundant in disease lesions when analyses were 
onducted at the national level (2 ASVs assigned to Pantoea and
ne to Frigoribacterium ) ( Supplementary Fig. S8 ). Region-specific
nalyses also revealed differentially abundant bacterial ASVs in 

ccitanie—Sphingomonas , Frigoribacterium , and Massilia (2 ASVs)—
nd in Champagne—Streptomyces and Bacillus (2 ASVs)—but none 
ere detected in Aquitaine ( Supplementary Figs. S9 –S10 ). TI-
AN identified 43 bacterial ASVs whose abundance was pos- 

tively correlated with the DNA concentration of P. viticola in
eaf tissues (Fig. 5 ; Supplementary File S3 ). Among the posi-
ively correlated ASVs, four were assigned to Bacillus , three to
seudomonas , three to Pantoea , one to Sphingomonas , and one to
treptomyces ( Supplementary File S3 ). Fig. 5 shows a subset of
he 40 ASVs with the highest z scores, including both posi-
ively and negatively correlated ASVs; consequently, not all the 
SVs positively associated with P. viticola are represented in 

https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data


8 | FEMS Microbiology Ecology, 2025, Vol. 101, No. 12

Ta
b

le
 
1.

 

M
os

t 
ab

u
n

d
an

t 
fu

n
ga

l 
sp

ec
ie

s 
of

 
gr

ap
ev

in
e 

le
av

es
 
in

 
th

re
e 

Fr
en

ch
 
w

in
e-

gr
ow

in
g 

re
gi

on
s.
 

Fr
en

ch
 
re

gi
on

 

O
cc

it
an

ie
 
(P

lo
ts
 
A

, B
, a

n
d
 
C

) 
A

q
u

it
ai

n
e 

(P
lo

ts
 
D

, E
, a

n
d
 
F)
 

C
h

am
p

ag
n

e 
(P

lo
ts
 
G

, H
, a

n
d
 
I)
 

Fu
n

ga
l 

sp
ec

ie
s 

R
el

at
iv

e 
ab

u
n

d
an

ce
 

(%
) ±

S
E 

Pr
ev

al
en

ce
 
(%

) 
Fu

n
ga

l 
sp

ec
ie

s 
R

el
at

iv
e 

ab
u

n
d

an
ce

 

(%
) ±

S
E 

Pr
ev

al
en

ce
 
(%

) 
Fu

n
ga

l 
sp

ec
ie

s 
R

el
at

iv
e 

ab
u

n
d

an
ce

 

(%
) ±

S
E 

Pr
ev

al
en

ce
 
(%

) 

Sp
or

ob
ol

om
yc

es
 
ro

se
u

s 
(B

as
id

io
m

yc
ot

a)
 

13
.3

7 
±

0.
99

a 
96

.7
1 

Sp
or

ob
ol

om
yc

es
 
ro

se
u

s 
(B

as
id

io
m

yc
ot

a)
 

19
.3

8 
±

0.
96

b
 

97
.1

3 
M

yc
os

ph
ae

re
lla

 
ta

ss
ia

n
a 

(A
sc

om
yc

ot
a)
 

48
.1
 
±

1.
11

c 
10

0 

M
yc

os
ph

ae
re

lla
 
ta

ss
ia

n
a 

(A
sc

om
yc

ot
a)
 

7.
07

 
±

0.
47

a 
95

.3
9 

Fi
lo

ba
si

di
u

m
 
ch

er
n

ov
ii 

(B
as

id
io

m
yc

ot
a)
 

12
.4
 
±

1.
09

c 
97

.1
3 

Sp
or

ob
ol

om
yc

es
 
ro

se
u

s 
(B

as
id

io
m

yc
ot

a)
 

14
.2

3 
±

0.
84

a 
10

0 

C
la

do
sp

or
iu

m
 

de
lic

at
u

lu
m
 

(A
sc

om
yc

ot
a)
 

5.
4 

±
0.

41
a 

84
.8

7 
M

yc
os

ph
ae

re
lla

 
ta

ss
ia

n
a 

(A
sc

om
yc

ot
a)
 

9.
88

 
±

0.
64

b
 

99
.4

3 
C

la
do

sp
or

iu
m
 

de
lic

at
u

lu
m
 

(A
sc

om
yc

ot
a)
 

13
.6

3 
±

0.
47

b
 

98
.3
 

Fi
lo

ba
si

di
u

m
 
ch

er
n

ov
ii 

(B
as

id
io

m
yc

ot
a)
 

3.
87

 
±

0.
42

b
 

88
.1

6 
Fi

lo
ba

si
di

um
 
w

ie
ri

ng
ae

 

(B
as

id
io

m
yc

ot
a)
 

7.
31

 
±

0.
81

 
87

.3
6 

V
is

h
n

ia
co

zy
m

a 
vi

ct
or

ia
e 

(B
as

id
io

m
yc

ot
a)
 

3.
5 

±
0.

48
c 

97
.1

6 

Fi
lo

ba
si

di
um

 
w

ie
ri

ng
ae

 

(B
as

id
io

m
yc

ot
a)
 

3.
22

 
±

0.
68

 
48

.0
3 

C
la

do
sp

or
iu

m
 

de
lic

at
u

lu
m
 

(A
sc

om
yc

ot
a)
 

5.
34

 
±

0.
42

a 
83

.9
1 

A
lt

er
na

ri
a 

m
et

ac
hr

om
at

ic
a 

(A
sc

om
yc

ot
a)
 

3.
45

 
±

0.
26

 
86

.3
6 

V
is

hn
ia

co
zy

m
a 

ca
rn

es
ce

ns
 

(B
as

id
io

m
yc

ot
a)
 

2.
33

 
±

0.
31

 
95

.3
9 

V
is

h
n

ia
co

zy
m

a 
vi

ct
or

ia
e 

(B
as

id
io

m
yc

ot
a)
 

1.
56

 
±

0.
21

b
 

89
.6

6 
Fi

lo
ba

si
di

u
m
 
ch

er
n

ov
ii 

(B
as

id
io

m
yc

ot
a)
 

1.
59

 
±

0.
27

a 
66

.4
8 

Fi
lo

ba
si

di
u

m
 
oe

ir
en

se
 

(B
as

id
io

m
yc

ot
a)
 

2.
13

 
±

0.
44

b
 

82
.2

4 
It

er
so

ni
lia

 
pa

nn
on

ic
a 

(B
as

id
io

m
yc

ot
a)
 

1.
42

 
±

0.
20

 
71

.8
4 

St
em

ph
yl

iu
m
 
so

la
ni
 

(A
sc

om
yc

ot
a)
 

0.
96

 
±

0.
18

 
91

.4
8 

St
em

ph
yl

iu
m
 
so

la
ni
 

(A
sc

om
yc

ot
a)
 

1.
27

 
±

0.
85

 
94

.0
8 

Fi
lo

ba
si

di
u

m
 
oe

ir
en

se
 

(B
as

id
io

m
yc

ot
a)
 

1.
15

 
±

0.
30

a 
59

.2
 

Fi
lo

ba
si

di
u

m
 
oe

ir
en

se
 

(B
as

id
io

m
yc

ot
a)
 

0.
5 

±
0.

08
a 

76
.7
 

Ph
le

bi
a 

ru
fa
 

(B
as

id
io

m
yc

ot
a)
 

1.
1 

±
0.

93
 

2.
63

 
A

lt
er

na
ri

a 
m

et
ac

hr
om

at
ic

a 
(A

sc
om

yc
ot

a)
 

1.
12

 
±

0.
11

2 
76

.4
4 

D
io

sz
eg

ia
 
hu

ng
ar

ic
a 

(B
as

id
io

m
yc

ot
a)
 

0.
46

 
±

0.
04

 
89

.7
7 

V
is

h
n

ia
co

zy
m

a 
vi

ct
or

ia
e 

(B
as

id
io

m
yc

ot
a)
 

1.
03

 
±

0.
24

a 
72

.3
7 

U
de

ni
om

yc
es
 
py

ri
co

la
 

(B
as

id
io

m
yc

ot
a)
 

1.
02

 
±

0.
15

4 
85

.6
3 

Bu
lle

ro
m

yc
es
 
al

bu
s 

(B
as

id
io

m
yc

ot
a)
 

0.
42

 
±

0.
06

 
93

.7
5 

To
ta

l 
40

.8
9 

To
ta

l 
60

.5
8 

To
ta

l 
86

.8
4 

T
h

e 
ta

b
le
 
sh

ow
s 

th
e 

to
p
 
te

n
 
m

os
t 

ab
u

n
d

an
t 

fu
n

ga
l 

sp
ec

ie
s,
 
in

d
ep

en
d

en
tl

y 
of
 
th

e 
le

af
 
ti

ss
u

e,
 
in
 
O

cc
it

an
ie

, A
q

u
it

ai
n

e 
an

d
 
C

h
am

p
ag

n
e.
 
Sp

ec
ie

s 
in
 
b

ol
d
 
ar

e 
am

on
g 

th
e 

to
p
 
te

n
 
m

os
t 

ab
u

n
d

an
t 

sp
ec

ie
s 

in
 
al

l 
th

re
e 

re
gi

on
s,
 
w

h
il

e 
th

os
e 

u
n

d
er

li
n

ed
 
ar

e 
am

on
g 

th
e 

to
p
 
te

n
 
m

os
t 

ab
u

n
d

an
t 

sp
ec

ie
s 

in
 
2 

ou
t 

of
 
3 

re
gi

on
s.
 
R

el
at

iv
e 

ab
u

n
d

an
ce

 
(%

) 
±

SE
 
in

d
ic

at
es
 
th

e 
p

ro
p

or
ti

on
 
of
 
se

q
u

en
ce

s 
as

si
gn

ed
 
to
 
th

e 
sp

ec
ie

s 
re

la
ti

ve
 
to
 
th

e 
to

ta
l 

n
u

m
b

er
 
of
 
se

q
u

en
ce

s 
in
 

th
e 

d
at

as
et

, w
it

h
 
th

e 
st

an
d

ar
d
 
er

ro
r 

(S
E)

. P
re

va
le

n
ce

 
(%

) 
in

d
ic

at
es
 
th

e 
p

er
ce

n
ta

ge
 
of
 
sa

m
p

le
s 

w
h

er
e 

th
e 

sp
ec

ie
s 

is
 
p

re
se

n
t 

w
it

h
 
at
 
le

as
t 

on
e 

se
q

u
en

ce
. F

or
 
ea

ch
 
sp

ec
ie

s 
am

on
g 

th
e 

to
p
 
te

n
 
m

os
t 

ab
u

n
d

an
t 

in
 
al

l 
th

re
e 

re
gi

on
s,
 

d
if

fe
re

n
t 

su
p

er
sc

ri
p

t 
le

tt
er

s 
in

d
ic

at
e 

si
gn

ifi
ca

n
t 

d
if

fe
re

n
ce

s 
in
 
re

la
ti

ve
 
ab

u
n

d
an

ce
 
ac

co
rd

in
g 

to
 
D

u
n

n
et

t’
s 

te
st
 
( α

= 
0.

05
).
 

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sec/article/101/12/fiaf111/8316132 by Biblio IFR
 PI U

niv Bordeaux II user on 19 N
ovem

ber 2025



Fournier et al. | 9

Ta
b

le
 
2.

 
M

os
t 

ab
u

n
d

an
t 

b
ac

te
ri

al
 
ge

n
er

a 
on

 
gr

ap
ev

in
e 

le
av

es
 
in

 
th

re
e 

Fr
en

ch
 
w

in
e-

gr
ow

in
g 

re
gi

on
s.
 

Fr
en

ch
 
re

gi
on

 

O
cc

it
an

ie
 
(P

lo
ts
 
A

, B
, a

n
d
 
C

) 
A

q
u

it
ai

n
e 

(P
lo

ts
 
D

, E
, a

n
d
 
F)
 

C
h

am
p

ag
n

e 
(P

lo
ts
 
G

, H
, a

n
d
 
I)
 

B
ac

te
ri

al
 
ge

n
u

s 
R

el
at

iv
e 

ab
u

n
d

an
ce

 

(%
) ±

S
E 

Pr
ev

al
en

ce
 
(%

) 
B

ac
te

ri
al
 
ge

n
u

s 
R

el
at

iv
e 

ab
u

n
d

an
ce

 

(%
) ±

S
E 

Pr
ev

al
en

ce
 
(%

) 
B

ac
te

ri
al
 
ge

n
u

s 
R

el
at

iv
e 

ab
u

n
d

an
ce

 

(%
) ±

S
E 

Pr
ev

al
en

ce
 
(%

) 

Sp
h

in
go

m
on

as
 

(P
ro

te
ob

ac
te

ri
a)
 

36
.9

5 
±

2.
79

b
 

73
.7

7 
Sp

h
in

go
m

on
as

 (P
ro

te
ob

ac
te

ri
a)
 

24
.2
 
±

1.
96

b
 

80
.1

6 
Fr

ig
or

ib
ac

te
ri

u
m
 

(A
ct

in
ob

ac
te

ri
ot

a)
 

11
.0

1 
±

1.
22

b
 

36
.6

2 

Fr
ig

or
ib

ac
te

ri
u

m
 

(A
ct

in
ob

ac
te

ri
ot

a)
 

10
.7

1 
±

1.
44

b
 

49
.1

8 
H

ym
en

ob
ac

te
r 

(B
ac

te
ro

id
ot

a)
 

6.
76

 
±

1.
12

 
53

.1
7 

Pa
n

to
ea

 

(P
ro

te
ob

ac
te

ri
a)
 

9.
97

 
±

0.
97

b
 

25
.3

5 

M
as

si
lia

 

(P
ro

te
ob

ac
te

ri
a)
 

9.
56

 
±

1.
44

 
50

.8
2 

M
et

hy
lo

ba
ct

er
iu

m
 

(P
ro

te
ob

ac
te

ri
a)
 

5.
63

 
±

0.
81

b
 

78
.5

7 
C

u
rt

ob
ac

te
ri

u
m
 

(A
ct

in
ob

ac
te

ri
ot

a)
 

7.
09

 
±

1.
01

b
 

21
.8

3 

Ps
eu

do
m

on
as

 

(P
ro

te
ob

ac
te

ri
a)
 

6.
65

 
±

1.
47

 
40

.1
6 

Pa
n

to
ea

 

(P
ro

te
ob

ac
te

ri
a)
 

4.
15

 
±

0.
77

a 
4.

76
 

Sp
h

in
go

m
on

as
 (P

ro
te

ob
ac

te
ri

a)
 

6.
46

 
±

1.
14

a 
67

.6
1 

Pa
n

to
ea

 

(P
ro

te
ob

ac
te

ri
a)
 

5.
9 

±
1.

45
ab
 

15
.5

7 
M

as
si

lia
 

(P
ro

te
ob

ac
te

ri
a)
 

3.
66

 
±

0.
66

 
37

.3
 

Ba
ci

llu
s 

(F
ir

m
ic

u
te

s)
 

4.
37

 
±

0.
82

 
67

.6
1 

H
ym

en
ob

ac
te

r 
(B

ac
te

ro
id

ot
a)
 

4.
98

 
±

1.
02

 
53

.2
8 

Ps
eu

do
m

on
as

 

(P
ro

te
ob

ac
te

ri
a)
 

2.
59

 
±

0.
40

 
36

.5
1 

M
et

hy
lo

ba
ct

er
iu

m
 (P

ro
te

ob
ac

te
ri

a)
 

2.
67

 
±

0.
44

a 
51

.4
1 

M
et

hy
lo

ba
ct

er
iu

m
 

(P
ro

te
ob

ac
te

ri
a)
 

4.
23

 
±

0.
60

a 
45

.9
 

St
re

pt
oc

oc
cu

s 
(F

ir
m

ic
u

te
s)
 

2.
34

 
±

0.
61

 
23

.0
2 

St
re

pt
om

yc
es
 

(A
ct

in
ob

ac
te

ri
ot

a)
 

2.
55

 
±

0.
63

 
33

.1
 

C
u

rt
ob

ac
te

ri
u

m
 

(A
ct

in
ob

ac
te

ri
ot

a)
 

2.
14

 
±

1.
13

a 
7.

38
 

Fr
ie

dm
an

ni
el

la
 

(A
ct

in
ob

ac
te

ri
ot

a)
 

2.
12

 
±

0.
53

 
24

.6
 

R
ho

do
co

cc
us

 

(A
ct

in
ob

ac
te

ri
ot

a)
 

2.
48

 
±

0.
57

 
35

.9
2 

K
in

eo
co

cc
us

 

(A
ct

in
ob

ac
te

ri
ot

a)
 

1.
11

 
±

0.
59

 
14

.7
5 

Fr
ig

or
ib

ac
te

ri
u

m
 

(A
ct

in
ob

ac
te

ri
ot

a)
 

2.
02

 
±

0.
33

a 
13

.4
9 

N
oc

ar
di

oi
de

s 
(A

ct
in

ob
ac

te
ri

ot
a)
 

2.
28

 
±

0.
31

 
80

.9
9 

A
rt

hr
ob

ac
te

r 
(A

ct
in

ob
ac

te
ri

ot
a)
 

0.
86

 
±

0.
29

 
18

.8
5 

C
u

rt
ob

ac
te

ri
u

m
 (A

ct
in

ob
ac

te
ri

ot
a)
 

1.
67

 
±

0.
40

a 
3.

97
 

Ps
eu

da
rt

hr
ob

ac
te

r 
(A

ct
in

ob
ac

te
ri

ot
a)
 

2.
09

 
±

0.
59

 
50

 

To
ta

l 
83

.0
9 

To
ta

l 
55

.1
4 

To
ta

l 
50

.9
7 

T
h

e 
ta

b
le
 
sh

ow
s 

th
e 

to
p
 
te

n
 
m

os
t 

ab
u

n
d

an
t 

b
ac

te
ri

al
 
ge

n
er

a,
 
in

d
ep

en
d

en
tl

y 
of
 
th

e 
le

af
 
ti

ss
u

e,
 
in
 
O

cc
it

an
ie

, A
q

u
it

ai
n

e 
an

d
 
C

h
am

p
ag

n
e.
 
G

en
er

a 
in
 
b

ol
d
 
ar

e 
am

on
g 

th
e 

to
p
 
te

n
 
m

os
t 

ab
u

n
d

an
t 

ge
n

er
a 

in
 
al

l t
h

re
e 

re
gi

on
s,
 
w

h
il

e 
th

os
e 

u
n

d
er

li
n

ed
 
ar

e 
am

on
g 

th
e 

to
p
 
te

n
 
m

os
t 

ab
u

n
d

an
t 

ge
n

er
a 

in
 
2 

ou
t 

of
 
3 

re
gi

on
s.
 
R

el
at

iv
e 

ab
u

n
d

an
ce

 
(%

) ±
SE

 
in

d
ic

at
es
 
th

e 
p

ro
p

or
ti

on
 
of
 
se

q
u

en
ce

s 
as

si
gn

ed
 
to
 
th

e 
ge

n
u

s 
re

la
ti

ve
 
to
 
th

e 
to

ta
l n

u
m

b
er
 
of
 
se

q
u

en
ce

s 
in
 
th

e 
d

at
as

et
, w

it
h
 
th

e 
st

an
d

ar
d
 
er

ro
r 

(S
E)

. P
re

va
le

n
ce

 
(%

) i
n

d
ic

at
es
 
th

e 
p

er
ce

n
ta

ge
 
of
 
sa

m
p

le
s 

w
h

er
e 

th
e 

ge
n

u
s 

is
 
p

re
se

n
t 

w
it

h
 
at
 
le

as
t 

on
e 

se
q

u
en

ce
. F

or
 
ea

ch
 
ge

n
u

s 
am

on
g 

th
e 

to
p
 
te

n
 
m

os
t 

ab
u

n
d

an
t 

in
 
al

l t
h

re
e 

re
gi

on
s,
 
d

if
fe

re
n

t 
su

p
er

sc
ri

p
t 

le
tt

er
s 

in
d

ic
at

e 
si

gn
ifi

ca
n

t 
d

if
fe

re
n

ce
s 

in
 
re

la
ti

ve
 
ab

u
n

d
an

ce
 
ac

co
rd

in
g 

to
 
D

u
n

n
et

t’
s 

te
st
 
( α

= 
0.

05
).
 

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sec/article/101/12/fiaf111/8316132 by Biblio IFR
 PI U

niv Bordeaux II user on 19 N
ovem

ber 2025



10 | FEMS Microbiology Ecology, 2025, Vol. 101, No. 12

Figure 3. Fungal ASVs that vary in abundance between asymptomatic and downy mildew-symptomatic grapevine leaf tissue. For each condition 
(asymptomatic vs. symptomatic), we represented the ASVs that were significantly more abundant in that condition according to at least one method 
of differential abundance analysis (DAA). The four methods used to identify these ASVs are ANCOM-BC2 (Lin and Peddada 2024 ), MaAslin2 (Mallick et 
al. 2021 ), LinDA (Zhou et al. 2022 ), and ZicoSeq (Yang and Chen 2022 ). All analyses were conducted at the national level (i.e. using the full dataset 
combining all three regions). Shades of blue and orange indicate the number of DAA methods that identified the ASV as differentially abundant 
(ranging from 1 to 4). ASVs belonging to basidiomycete yeasts are highlighted in green and marked with a dot while those known as foliar pathogens 
of grapevine are highlighted in pink and marked with a triangle. ASVs that do not meet either of these criteria are displayed in black without any 
specific symbol. ASVs that are also significant in the TITAN analysis (Baker et al. 2023 ) are shown in bold. The y-axis provides information on the 
lowest taxonomic level at which each ASV was identified, including its prefix, assignment, and number of ASVs. The prefix abbreviations are p for 
phylum, c for class, o for order, f for family, g for genus, and s for species. 
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he figure. The complete list is available in Supplementary File
3 . 

he microbial α-diversity and bacterial load both 

ecrease in disease lesions 

he bacterial and fungal community α-diversities were signifi-
antly higher in leaf tissues that were asymptomatic at the time of
ampling during the downy mildew epidemic (Fig. 6 A-C for fungi
nd Fig. 6 E-G for bacteria; Table S2 ), in accordance with hypothe-
is H1. However, in the case of fungal communities, the difference
as not significant when the inverse Simpson’s index was used

o estimate α-diversity (Fig. 6 C), suggesting that the variation in
iversity between asymptomatic tissues and disease lesions was
ue primarily to rare fungal ASVs. 

The bacterial load was significantly lower in symptomatic tis-
ues according to ddPCR analysis (Fig. 6 H; Table S2 ), which con-
radicts our initial expectation (H2). In contrast, the fungal load
as significantly higher in symptomatic tissues than in asymp-
omatic tissues (Fig. 6 D; Table S2 ). This increase is likely caused
y the increase in P. viticola DNA amount in disease lesions, as
he primers used for ddPCR can amplify both fungi and P. viticola .
ccording to the results of the qPCR analysis, the P. viticola DNA
mount increased sharply in symptomatic tissues, with a multi-
licative ratio of 45. In comparison, the overall increase in ITS copy
umber/μg of leaf DNA measured by ddPCR was more moderate,
ith a multiplicative ratio of 3.2. This discrepancy could reflect a
ecrease in fungal load in symptomatic tissues—similar to what
as observed for bacteria. 

elective processes in microbiota assembly 

ncrease in disease lesions 

nalyses of the β-NTI and NST indices revealed contrasting com-
unity assembly processes between fungi (Fig. 7 A-C) and bacteria

Fig. 7 E-G). Indeed, the bacterial community assemblage was pre-
ominantly governed by stochastic processes (Fig. 7 E-G), while de-
erministic and stochastic processes contributed almost equally

https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
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Figure 4. Taxonomic tree of fungal ASVs that vary in abundance according to P. viticola DNA concentration and leaf tissue status (asymptomatic vs. 
symptomatic). Orange branches correspond to ASVs that meet both of the following criteria: (i) identified by at least one differential abundance 
analysis (DAA) method as more abundant in lesions and (ii) with abundance positively correlated with P. viticola DNA concentration in tissues 
(according to TITAN analysis (Baker et al. 2023 )). The blue branches correspond to ASVs identified by at least one DAA as more abundant in 
asymptomatic tissues and negatively correlated with the P. viticola DNA concentration. The four DAA methods used were ANCOM-BC2 (Lin and 
Peddada 2024 ), MaAslin2 (Mallick et al. 2021 ), LinDA (Zhou et al. 2022 ), and ZicoSeq (Yang and Chen 2022 ). All analyses were conducted at the national 
level (i.e. using the full dataset combining all three regions). Note that all the ASVs shown in orange belong to the Basidiomycota phylum, whereas 
those in blue are exclusively from the Ascomycota phylum. 
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to the assembly of fungal communities (Fig. 7 A-C). According to 
the NST values ( < 50%), fungal communities even tended to be 
shaped more by deterministic processes (Fig. 7 A). 

Deterministic processes in fungi were solely due to ho- 
mogeneous selection (Fig. 7 C), whereas in bacteria, these 
processes were more balanced between homogeneous selec- 
tion and variable selection (Fig. 7 G). Contrary to hypothe- 
sis (H3), stochasticity did not increase in disease lesions. In- 
stead, selective processes increased slightly in disease lesions 
for both fungal communities (according to the β-NTI index) 
(Fig. 7 B) and bacterial communities (according to the NST index) 
(Fig. 7 E). 

The bacterial communities associated with disease lesions 
were significantly more dissimilar from each other (i.e. more dis- 
ersed) than were those associated with asymptomatic tissues 
Fig. 7 H). However, this pattern did not hold for the fungal com-

unities (Fig. 7 D). 

iscussion 

n the present study, we applied state-of-the-art methods in mi-
robial community ecology to the metabarcoding datasets pro- 
ided by Barroso-Bergadà et al. ( 2023a ) and complemented these
atasets with additional quantitative data. We compared the di- 
ersity, composition, and assembly processes of microbial com- 
unities between asymptomatic leaf tissues and downy mildew 

esions across three French wine-growing regions. This detailed,
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Figure 5. Bacterial taxa whose abundance covaries with the P. viticola DNA concentration in grapevine leaf tissues. The figure displays ASVs whose 
abundance is significantly correlated with the P. viticola DNA concentration in leaf tissue, as identified by TITAN analysis (Baker et al. 2023 ). ASVs in 
blue are negatively correlated with P. viticola DNA levels, indicating that they are more abundant when its concentration is low. Conversely, ASVs in 
orange are positively correlated, being more abundant at high P. viticola DNA levels. The analysis was conducted at the national level (i.e. using the full 
dataset combining all three regions). The y-axis provides information on the lowest taxonomic level at which the ASV was identified, including its 
prefix, assignment, and number of ASVs. The prefix abbreviations are p for phylum, c for class, o for order, f for family, g for genus, and s for species. 
The 40 ASVs with the highest z scores are shown in this figure. Members of Bacillus , Pantoea , Pseudomonas , Sphingomonas and Streptomyces are shown in 
green followed by a diamond. 
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heory-driven analysis allowed us to propose a novel scenario
f interactions involving fungi, bacteria, and the pathogenic
omycete P. viticola , the causal agent of grapevine downy mildew. 

 new scenario of interactions between the 

rapevine leaf microbiota and P. viticola 

ur analyses revealed that the microbial communities associated
ith asymptomatic tissues and disease lesions harbored very sim-

lar taxonomic compositions for both fungi and bacteria, despite
he significant increase in the DNA amount of the pathogen in dis-
ase lesions and the visible symptoms caused to the leaf tissues.
verall, we detected only subtle changes in the composition of the

eaf microbiota triggered by infection. These changes were driven
y selective processes, according to our analyses of community
ssembly processes. 
In the case of fungi, leaf tissue infection by P. viticola locally se-
ected for basidiomycetous yeasts, such as Sporobolomyces patago-
icus , Sporobolomyces roseus , Cryptococcus laurentii , and Udeniomyces
yricola . These yeasts increased in abundance upon infection
cross all wine-growing regions considered. In the case of bacteria,
eaf tissue infection by P. viticola locally selected for certain groups
f bacteria, such as Bacillales and Streptomycetales. In both king-
oms, these compositional shifts were accompanied by reduced
acterial load (but not fungal load) and α-diversity, and a minor

ncrease in community assembly determinism—suggesting that
esions act as environmental filters. 

Surprisingly, the leaf tissues that were asymptomatic at the
ime of sampling during the epidemic were not consistently as-
ociated with the fungi or bacteria known for their biocontrol
roperties. Instead, they were associated with other airborne
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Figure 6. Variation in microbial α-diversity and load between asymptomatic and downy mildew-symptomatic grapevine leaf tissue. The figure shows 
the diversity and load of (A-D) fungal and (E-H) bacterial communities in grapevine leaves collected at the peak of the downy mildew epidemic. The 
metrics presented, from left to right, are Richness (panels A for fungi and E for bacteria), the observed total number of ASVs (Hill number q = 0); 
Shannon (B and F), the exponential of the Shannon entropy index (Hill number q = 1); Simpson (C and G), the inverse of the Simpson concentration 
index (Hill number q = 2); and Load (D and H), the microbial load (expressed as the number of copies/ng of plant DNA and estimated using ddPCR). 
The statistical significance of the linear mixed effects models is indicated as follows: ns (not significant), ∗ ( P < 0.05), ∗∗ ( P < 0.01), ∗∗∗ ( P < 0.001). The 
detailed statistical results are presented in Table S2 . 
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pathogens of grapevines. The Erysiphe and Botrytis genera, which 

comprise species responsible for powdery mildew and gray mold,
respectively, increased in abundance in asymptomatic tissues. 
These results suggest that leaf infection by P. viticola locally ex- 
cludes other pathogens and selects for specific microbial taxa,
some of which may have biocontrol activities, such as basid- 
iomycetous yeasts and Bacillus species. 

Fungi and bacteria with known biocontrol 
properties are selected for in disease lesions of 
grapevine downy mildew 

According to our analyses, basidiomycetous yeasts were consis- 
tently selected for within disease lesions. We used several meth- 
ods to identify the fungal taxa that were enriched in disease le- 
sions compared with asymptomatic tissues or whose abundance 
is positively correlated with the P. viticola DNA concentration. All 
the fungal taxa that met the two criteria were basidiomycetous 
yeasts belonging to the classes Microbotryomycetes and Tremel- 
lomycetes, including Sporobolomyces roseus , Cryptococcus laurentii , 
Curvibasidium cygneicollum , Cystofilobasidium macerans , Bulleromyces 
lbus , Holtermanniella wattica , and Udeniomyces pyricola . S. roseus
as previously identified as a potential competitor of P. viticola
ased on interaction network analysis using the same dataset 
Barroso-Bergadà et al. 2023b ). Surprisingly, however, our results 
how that S. roseus is enriched in diseased lesions, suggesting that
ts ecological role may be more complex than simple antagonism.
asidiomycetous yeasts are well known for their biocontrol ac- 
ivity against postharvest diseases (Liu et al. 2013 , Spadaro and
roby 2016 , Freimoser et al. 2019 ). They reduce the development
f pathogens through various mechanisms, including competi- 
ion for nutrients and space; secretion of toxins, enzymes, and
olatile organic compounds; direct parasitism; and indirect mech- 
nisms such as resistance induction (Liu et al. 2013 , Spadaro and
roby 2016 , Freimoser et al. 2019 ). Fournier et al. ( 2025 ) found
asidiomycete yeasts to be significantly more abundant in the 
hyllosphere of young grapevine leaves from plots with histori- 
ally low downy mildew pressure. This suggests that they may
ontribute to early-season protection against P. viticola infection.
hus, these yeasts are naturally present in the phyllosphere early

n the growing season (Fournier et al. 2025 ) and appear to in-

https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
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Figure 7. Contributions of deterministic and stochastic processes to the assembly of microbial communities in asymptomatic and downy 
mildew-symptomatic grapevine leaf tissue. The figure shows the assembly processes (calculated with two indices, NST and βNTI) and the sample 
dispersion for the (A–D) fungal and (E–H) bacterial communities. NST (panels A for fungi and E for bacteria) quantifies the proportion of stochastic vs. 
deterministic processes in microbial community assembly. A value of 50% is used as a cutoff (indicated by a dashed line in the figure), with < 50% 

indicating a more deterministic assembly and > 50% indicating a more stochastic assembly. βNTI (B and F) measures phylogenetic turnover between 
pairs of samples. βNTI < -2 indicates a significant effect of homogeneous selection, βNTI > 2 indicates a significant effect of variable selection, and -2 
< βNTI < 2 indicates a dominance of stochastic processes. The dashed lines represent the significance thresholds for βNTI. The assembly process (C 

and G) indicates the percentage of sample pairs assigned to each process. Finally, the dispersion (D and H) represents the distance to the centroid of 
each sample based on weighted UniFrac distances. 
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rease in abundance within disease lesions according to our re-
ults. 

We also identified several bacterial taxa whose abundance in-
reased with that of P. viticola . These strains belong to the gen-
ra Streptomyces , Bacillus, Pantoea, Pseudomonas , and Sphingomonas ,
ost of which contain strains known for their biocontrol activ-

ty against grapevine downy mildew (Compant et al. 2013 , El-
harkawy et al. 2018 , Bruisson et al. 2019 ). In particular, Bacillus
pecies are well known for their biocontrol activities, through di-
ect antibiosis, competition for niches and nutrients and induc-
ion of host systemic resistance (Compant et al. 2013 ). They pro-
uce various bioactive compounds, such as surfactin, iturin, and
engycin, which display strong suppressive effects on a wide range
f pathogens (Li et al. 2019 ). The application of live strains of Strep-
omyces or Bacillus bacteria, or their extracts, has been shown to
educe disease severity (El-Sharkawy et al. 2018 , Li et al. 2019 )
y inhibiting and lysing zoospores (Abdalla et al. 2011 ), disrupting
oospores motility (Islam et al. 2016 , Raveau et al. 2024 )), and dam-
ging sporangia and sporangiophores (Liang et al. 2016 ). Pantoea
gglomerans and Sphingomonas zeae are also considered potential
ntagonists of P. viticola according to in vitro confrontation tests
Bruisson et al. 2019 ). 

To our knowledge, our study is the only one to specifically in-
estigate the microbiota in grapevine downy mildew lesions using
etabarcoding, and to directly compare microbial communities
etween symptomatic and asymptomatic tissues of the same leaf.
ther studies have compared grapevine microbiota composition
nder conditions of low versus high downy mildew abundance,
ut their experimental designs differed substantially. The com-
arisons were carried out either between resistant and suscepti-
le grapevine cultivars (Wicaksono et al. 2023 , Duret et al. 2025 ),
etween treated and untreated plants during a downy mildew epi-
emic (Duret et al. 2025 ), between plants from plots with histor-

cally low or high incidence and severity of the disease (Fournier
t al. 2025 ), or between different levels of disease severity (Per-
zzolli et al. 2014 ). These studies mainly focused on the bacte-
ial microbiota ( Supplementary Tables S3 ) and identified several
enera that were significantly more abundant under each of the
ompared conditions ( Supplementary Tables S3 and S4 ). For ex-
mple, several bacterial genera were reported as more abundant
nder low downy mildew abundance, including Paracoccus and
ltererythrobacter , which were negatively correlated with disease
everity (Perazzolli et al. 2014 ) and enriched in resistant culti-
ars (Wicaksono et al. 2023 , Duret et al. 2025 ). Similarly, Rosemonas
as negatively correlated with downy mildew severity (Perazzolli

t al. 2014 ) and enriched in plots with historically low levels of
isease (Fournier et al. 2025 ). These findings are consistent with
ur results, as we also found these taxa to be more abundant in
symptomatic tissues. In addition, Duret et al., ( 2025 ) identified
acterial taxa with potential biocontrol activity under both con-

https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiaf111#supplementary-data
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ditions, supporting the hypothesis that high downy mildew abun- 
dance could also serve as a reservoir of biocontrol agents. Over- 
all, further comparisons among studies remain challenging due 
to differences in plant organs analyzed and experimental designs 
( Supplementary Tables S3 and S4 ). 

The plant host does not lose control of its 

microbiota in disease lesions, in contrast to 

ecological theories 

Moreover, in contrast with our initial hypothesis H2, our results 
suggest that the plant host does not lose control of its micro- 
biota in diseased tissues, at least for fungi. Fungal and bacte- 
rial biomass did not increase in disease lesions but rather de- 
creased, and the processes driving community assembly became 
more deterministic. Homogeneous selection of fungal commu- 
nities slightly increased in disease lesions compared to asymp- 
tomatic tissues, suggesting that infection altered fungal commu- 
nities in a similar way among all vine plants across the three ge- 
ographic regions. These deterministic and convergent changes in 

fungal communities in disease lesions could result from environ- 
mental filtering imposed by changes in leaf structure, physiology 
and chemistry. Indeed, leaf infection by P. viticola manifests as yel- 
low and oily spots on the leaves, which evolve into necrotic tissues 
(Gessler et al. 2011 ) and trigger significant changes in the concen- 
tration and spatial distribution of several micro- and macronutri- 
ents (Cesco et al. 2020 ). Alternatively, the deterministic and con- 
vergent changes in fungal communities in disease lesions could 

result from the active selection of specific microorganisms by 
the plant in response to infection-induced stress (Teixeira et al.
2019 ). This pattern is consistent with the “cry-for-help” hypothe- 
sis, whereby plants actively recruit beneficial microbes—such as 
biocontrol-active fungi—in response to biotic stress to fight or re- 
sist stress (Raaijmakers and Mazzola 2016 , Rizaludin et al. 2021 ). 

Overall, our analysis of microbiota assembly processes did not 
support the Anna Karenina Principle (AKP). Fungal communities 
in disease lesions are not more dissimilar from each other (i.e. they 
are not more dispersed) than are communities in asymptomatic 
tissues, a pattern that is usually used to support the AKP (Ahmed 

et al. 2019 , Bonthond et al. 2023 , Arnault et al. 2023 ). Moreover,
changes in fungal communities between asymptomatic tissues 
and disease lesions did not correspond to any of the theoretical 
scenarios proposed by (Arnault et al. 2023 ), as we did not detect 
an increase in stochastic processes in disease lesions (AKP pat- 
tern) or a shift between predominantly heterogeneous and homo- 
geneous selection (anti-AKP pattern). The bacterial communities 
were driven mostly by stochastic processes, regardless of the leaf 
tissue condition (symptomatic or asymptomatic), suggesting that 
the bacterial communities were loosely controlled by the plant 
under both conditions. 

Perspectives 

One of the most promising findings from our study, which shifts 
our initial approach, is that symptomatic tissues serve as a valu- 
able reservoir for protective fungal and bacterial microorganisms. 
The discovery of a significant number of biocontrol agents in 

downy mildew lesions, from both fungal and bacterial kingdoms,
opens exciting new avenues for exploring their complementarity 
in biological control. With the growing interest in bacterial-fungal 
interactions, designing SynComs (Synthetic Microbial Communi- 
ties) that integrate both fungal and bacterial candidates hold the 
potential to uncover powerful synergies between these organisms, 
which could significantly advance biocontrol strategies. To fully 
ealize this potential, enhancing the taxonomic assignment of 
ey bacterial ASVs is essential. Multiomics approaches, combin- 
ng metagenomics, metatranscriptomics and metabolomics, offer 
romising solutions capable of dramatically improving the preci- 
ion of bacterial identification and potentially revealing the pre- 
ise identities of Bacillus , Streptomyces , and Sphingomonas found in
esions. In addition, these methods would enable us to elucidate
he metabolites produced and exchanged in the lesion (Crandall 
t al. 2020 ) to develop a mechanistic scenario of interactions be-
ween fungi, bacteria and the pathogenic oomycete P. viticola . 
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