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Abstract
The intensification of agriculture has promoted the simplification and specialization of agroecosystems, resulting in negative 
impacts such as decreasing landscape heterogeneity and increasing use of plant protection products (PPP), with the accelera-
tion of PPP transfers to environmental compartments and loss in biodiversity. In this context, the present work reviews the 
various levers for action promoting the prevention and management of these transfers in the environment and the available 
modelling tools. Two main categories of levers were identified: (1) better control of the application, including the reduc-
tion of doses and of PPP dispersion during application thanks to appropriate equipment and settings, PPP formulations and 
consideration of meteorological conditions; (2) reduction of post-application transfers at plot scales (soil cover, low tillage, 
organic matter management, remediation etc. and at landscape scales using either dry (grassed strips, forest, hedgerows and 
ditches) or wet (ponds, mangroves and stormwater basins) buffer zones. The management of PPP residues leftover in the spray 
tanks (biobeds) also represents a lever for limiting point-source PPP pollution. Numerous models have been developed to 
simulate the transfers of PPPs at plot scales. They are scarce for landscape scales. A few are used for regulatory risk assess-
ment. These models could still be improved, for example, if current agricultural practices (e.g. agro-ecological practices 
and biopesticides), and their effect on PPP transfers were better described. If operated alone, none of the levers guarantee a 
zero risk of PPP transfer. However, if levers are applied in a combined manner, PPP transfers could be more easily limited 
(agricultural practices, landscape organization etc.).
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Introduction

The intensification of agricultural practices has promoted 
the simplification and specialization of agroecosystems, 
with resulting negative impacts such as decreased land-
scape heterogeneity, increased use of chemicals (mainly 
plant protection products, PPP, frequently named “pes-
ticides”) per unit area, and abandonment of less fertile 
areas. These impacts have induced a loss in biodiversity 
and species abundance within ecosystems (Emmerson 
et al. 2016). This loss in biodiversity due to intensive agri-
culture is of the same order of magnitude as the impact of 
climate change (Sanaullah et al. 2020). Although it is not 
the only explanatory factor, the use of PPPs has signifi-
cantly contributed to the decline of biodiversity in agri-
cultural landscapes (Berendse et al. 2004; Outhwaite et al. 
2022; Pesce et al. 2024).

During and following their application, PPPs are dis-
tributed across the different environmental compartments 
(Margoum et al. 2024), i.e., soil, surface water (Batáry 
et al. 2020; Berendse et al. 2004; Outhwaite et al. 2022; 
Raven and Wagner 2021), groundwater (Benoit et  al. 
2023), atmosphere (Mayer et al. 2024) and canopy (Benoit 
et al. 2023). Their presence in these different compart-
ments and their subsequent fate depend on the physico-
chemical and biological properties of the PPPs used, on 
the environmental conditions (climate, soil and metabo-
lism of organisms), on the agricultural practices and on 
the landscape structure. If the biological activity in soils 
is high, PPPs could be rapidly degraded, sometimes to 
the point of mineralization (transformation of organic 
substances leading to the release of mineral substances: 
ammonia, water,  CO2, nitrates, phosphates and sulphates 
(Fenner et al. 2013)). The biodiversity of a soil is therefore 
a fundamental criteria for the PPP degradation by micro-
organisms, as it is one of their major dissipation pathways 
(Benoit et al. 2023). However, the final transformation 
products may also have impacts and thus still need to be 
identified and studied.

The unintentional impacts of the use of PPPs include 
their likely transfer to (1) surface waters, mainly by runoff 
and erosion but also by atmospheric deposition. The latter 
includes deposition during the application of spray drop-
lets (referred as sedimentary spray drift hereafter), deposi-
tion after application of the atmospheric gaseous fraction 
(linked to the fraction of compound being volatilized from 
the treated field and dispersed downwind) and even wet 
deposition (linked to rainfall); (2) groundwater by leach-
ing; and (3) the atmosphere during application (by spray 
droplet drift) and post-application by volatilization from 
treated surfaces (soil or canopy) or even wind erosion. 
Once in the atmosphere, they are transported over variable 

distances and eliminated by dry and/or wet deposition on 
soil or water bodies, or degraded (by reactions with oxi-
dants present in the air (e.g. OH, ozone) or by photolysis). 
It should be emphasized that agricultural practices can 
both limit or accelerate the transfer of PPPs to the water 
and atmosphere compartments according to the type of 
crops. In particular, these involve planting density, soil 
cover management, tillage, drainage and irrigation, the 
presence of ditches etc. (Charbonnier et al. 2015).

The first lever for reducing environmental exposure to 
PPPs and consequently their impact on biodiversity would be 
to reduce the quantities applied and even to eliminate the use 
of PPPs. The agronomic approaches favouring the reduction 
of PPP use, e.g. agroecology (Doré et al. 2011; Malézieux 
2012) or integrated pest management (IPM) (Barzman et al. 
2015), have not been covered in this review which rather 
focuses on levers for reducing PPP transfer when they are 
used. The prevention and the management of PPP transfers 
within the environment and their related impacts on biodi-
versity can be based on two main categories of levers for 
action (Aubertot et al. 2005): (1) better control of the appli-
cation (including dose reduction) and of the dispersion of 
PPPs during application; (2) reduction of post-application 
transfers, both at plot and extra-plot (landscape) scales. The 
management of effluents (especially PPP residues leftover 
from spray tanks (tank bottoms)) also represents a lever for 
limiting point-source PPP pollution. In the European Union, 
the regulatory framework of the management of the risks 
and impacts of PPPs is mainly covered by two directives: 
the Directive 2000/60/CE (2000) establishing a framework 
for Community action in the field of water policy and the 
Directive 2009/128/EC (2009) establishing a framework for 
Community action to achieve the sustainable use of pesti-
cides. The recent evaluation of the Directive 2009/128/EC 
(2009) identified progress in terms of PPP dosage reduc-
tions, management of wastes, training and the mandatory 
control of PPP application equipments, but the same report 
also highlighted improvements still to be achieved among 
member states concerning IPM enforcement and PPP use 
in general (European Commission Directorate-General for 
Health and Food Safety 2022). National public policies have 
been developed on the basis of these directives in order to 
promote practices that are more respectful of the environ-
ment. In France, for example, the CAP’s MAEC schemes as 
well as national programmes, such as the Biodiversity Plan 
(which gave rise to payments for environmental services) 
and the “Pacte en faveur de la haie” (hedgerow pact), con-
tribute to the introduction of landscape features and ground 
cover. A Recovery Plan offers financial support for more 
environmentally efficient equipment. Most of the practices 
encouraged by these programmes are likely to influence the 
use of PPP but also their fate and transfer.
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In this context, the objectives of the present work were to 
review the various available options for the prevention and 
the management of PPP transfers in the environment from 
the application plot to landscape scales. The models used 
for assessing the fate of PPPs in the environment to prevent 
and manage the related contamination are also reviewed, and 
areas for improvement are identified.

Literature corpus

The synthesized knowledge was acquired through bibliomet-
ric research covering the 2010–2021 period. It updates the 
previous review which was carried out for Ecophyto R&D 
in 2010 (Butault et al. 2010). The keywords were defined 
collectively (Table SI1), the international bibliographic 
database Web of Science™ was used for constituting the 
original corpus, and priority was given to reviews. The cor-
pus finally obtained contains more than 2500 references. 
Two preliminary categorisations were carried out: the first 
round based on the title and the second on the abstract. The 
selected corpus was divided according to the expertise of 
the different authors who then proceeded to in-depth read-
ing of each reference, which was completed if necessary 
by additional literature targeting a specific topic (including 
publications or reports).

The 491 references cited in the final report of the col-
lective scientific assessment to which this work contributed 
(Mamy et al. 2022) were distributed as follows: 321 papers, 

89 reviews, 39 reports, 16 conference papers, 9 book chap-
ters, 10 books, four academic works (PhD thesis) and three 
other types of documents. Papers represent 65% of the cor-
pus and reviews nearly 18%; 83% of the corpus therefore 
contains studies validated by a classic peer-reviewed pro-
cess. In this review, only the main references were quoted, 
in addition to 17 post-2021 relevant publications.

The distribution of publication years includes references 
prior to 2010 which are considered essential (52 publica-
tions, i.e., 14%) and a large majority, more than 85%, of 
publications after 2010 (Fig. 1). The strengthening of the 
topics dealing with transfer reduction levers was observed 
from 2016 onwards (50% of references are very recent). This 
result can also be explained by the search in the corpus for 
recent synthesis projects (journals), which integrate previous 
works into their analysis.

The analysis of certain headings, which were unevenly 
filled in the references, pointed out that 11 documents have 
at least one co-author from the industrial world while 106 
documents mention public funding.

Control of PPP input and dispersion 
during application

Reduction of applied quantities

The EU Farm to Fork Strategy (European Commission 
2020) recommends the systematic use of an IPM tool based 

Fig. 1  Annual distribution of the Web of Science™ cited references, corresponding to 75% of the total literature corpus
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on the evaluation of risks and on the preference towards 
alternatives to PPP. In the case where an alternative exists 
or is efficient, the use of PPP then becomes as an ultimate 
solution.

It is possible to limit the amounts of applied PPP by using 
precision agriculture techniques. These involve the use of 
proxy-detection or remote sensors, 3D vegetation sensors, 
decision support systems and machine learning (Lan et al. 
2020). An exhaustive review of smart spraying technologies 
for precise weed management is proposed by Vijayakumar 
et al. (2023). The development of smart sprayers for bush 
and tree crops is still ongoing with the aim of adapting PPP 
dosage to the canopy structure and density (Partel et al. 
2021; Xun et al. 2023).

In this context, the first step consists in detecting the 
bio-aggressors and evaluating their severity, essentially 
via imaging techniques. Tactical opportunities can then be 
defined for treatment solutions (to treat or not to treat) and 
strategic opportunities (how to treat and preventive or cura-
tive protection). However, the early detection of certain dis-
eases or insects still remains complex as this would require 
high resolution analysis (Spring et al. 2017). An innovative 
method for early detection of fungal diseases is based on the 
monitoring of pathogenic fungal spores in the atmosphere 
(González-Fernández et al. 2020). This type of technique, as 
well as those based on the detection of volatile compounds 
(pheromones, kairomones, etc.), is likely to evolve with the 
development of biocontrol and biopesticides in order to opti-
mize the process while preserving the use of resources. In 
the second step the appropriateness of application is defined 
using a benefit/risk analysis, most often based on crop yields 
and decision support tools (Campos et al. 2020). The third 
step focuses on the adjustment of doses according to the sur-
face and volume of vegetation in order to promote intercep-
tion (Garcera et al. 2017) and to limit unintentional impacts.

Several techniques for adjusting the applied PPP doses 
exist. In this case the actuator plays on the amount of appli-
cation solution delivered by the nozzles (variable rate appli-
cation — VRA (Fessler et al. 2020); pulse width modulation 
— PWM (Salcedo et al. 2020); and real time spot spraying 
(Womac et al. 2016)). In parallel, the dose should be adapted 
to the type of crop. Lidar (light detection and ranging) is 
used for scanning the vegetation so as to adapt the applied 
dose in real time (Lidar aided VRA) (Zhu et al. 2017).

According to current estimates, the potential reduction 
in PPP use through precision agriculture varies greatly with 
the context. Decreases in herbicide applications through spot 
spraying can be as high as 90% at early infestation stages 
when localized application techniques are implemented (Vil-
lette et al. 2022). A 30 to 60% reduction in fungicide or 
insecticide applications is possible, although it depends on 
the ability to identify the disease early enough on the type 
of pest and on the crop (Roman et al. 2020). At present, 

since the registration process of PPP does not include such 
dose reduction strategies, further research is still underway 
in order to better characterize the effect of precision agri-
culture on PPP use.

Reduction of spray drift losses

To reduce the risks associated with PPPs, it is necessary 
to limit losses during application (Fig. 2). The factors to 
be modulated correspond more particularly to the size of 
the spray drops, management of air assistance (co-flow), 
containment of sprays, or porosity of the vegetation, etc. 
These factors are all related to the application equipment 
used, to its settings and to the vegetation typologies via their 
architecture.

Due to its principle of atomization of liquid in the form 
of drops, spraying generates unavoidable losses of PPPs by 
spray droplet dispersion. The effect of drop size on their 
driftability is well known (the larger the diameter, the lower 
the drift) (Fig. 2) (Aubertot et al. 2005). Air inclusion noz-
zles, through a specific atomization process, increase the 
droplet diameter and are recognized for their performance 
in limiting spray drift (Kjaer et al. 2014). To this date, they 
are only taken into account in the registration process of 
PPPs for a low reduction value (50%) (Regulation (EC) No 
1107/2009 2009). Their main recommendation of use orig-
inates from national post registration regulations. Indeed, 
since 2006, they have been integrated into the French regu-
lation concerning the protection of sensitive areas in addi-
tion to the implementation of untreated zones and recently 
to safety distances (French Republic 2019). Nevertheless, 
studies focusing on the different nozzle typologies still need 
to be carried out so as to assess whether or not air inclu-
sion nozzles maintain a satisfactory efficacy of PPPs (Doru-
chowski et al. 2017).

The spray application material may differ according 
to the type of cropping systems. Structurally low crops 
are generally treated using a boom sprayer, with nozzles 
spraying at a relatively close distance to the targets and 
with a downward trajectory. Within such a context the risk 
of drift is expected to be low, even though the drop size 
generated by nozzles still significantly favours drifting 
during treatment. For tall crops, air pressure produced by 
the equipment is required for the droplets to reach high 
and thick vegetation and for the penetration of the spray 
mix within the canopy to be efficient. However, this type 
of air assistance can also increase the risk of drift when 
unadapted to the crop porosity and size. Existing techno-
logical solutions in horticulture are based on directed air-
flow devices that generate a horizontal transport of drops 
towards the targeted vegetation (Balsari et al. 2019; Man-
hani et al. 2013). However, the use of catch panel sprayers 
(tunnel sprayers and recycling sprayers) is limited by the 
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presence of hail-proof or insect-proof nets that prevent the 
straddling of the rows. In vineyards, for structurally tall 
crops, the technological solutions include vertical boom 
equipment, where both sides of the vine row are treated 
face to face with large drops produced by air inclusion 
nozzles. Vertical booms can be confined using contain-
ment panels (tunnel sprayers) and they can incorporate a 
device to recycle the un-intercepted spray using recovery 
panels (recycling sprayers) (Diaconu et al. 2017). These 
devices are characterized by their improved deposition 
performance on the treated crop and drift limitation. How-
ever, their use in vineyards, besides their cost, depends on 
field conditions (headland size, absence of stones and field 
slope) (Fig. 2). The use of confined systems with boom 
sprayer is possible for inter-row weed control (one deflec-
tor per nozzle) or for weed control and/or vine chemical 
pruning.

The other influential settings of the equipment to limit 
drift are the wetting (volume/ha) and the sprayer speed that 
both impact the duration of the application. The volume/
ha depends on the quantities deposited, with an optimum 
according to the leaf area index and to the vegetation struc-
ture (de Araujo et al. 2016).

The use of drones for spraying (unmanned aerial spraying 
system, UASS) is currently not authorized at the European 
level (except when the ban for aerial spraying is exempted), 
although certain studies suggest they might have a posi-
tive effect on dose and/or drift reduction (Brown and Giles 

2018). Several studies are presently being conducted world-
wide to confirm the benefits and evaluate the drawbacks of 
such a technique.

The substitution of spraying by alternative processes such 
as seed treatment eliminates the risk of droplet spray drift 
(Fig. 2), but it is likely to generate other types of transfers: 
indeed, the physical deterioration of the seed coating by 
vacuum pneumatic seeders leads to the dispersion of PPP-
containing seed dust. The varying size distribution impacts 
their driftability (Foque et al. 2017). Hence, in France, 
since the 13th April 2010 decree (French Republic 2010), 
these seeders must be equipped with deflectors. However, 
although the deflectors may appear to be effective for reduc-
ing the concentrations in the air, the deposits downstream 
of the treated plot and the emissions themselves, their effi-
ciency remains low for fine particles (micrometric). Indeed, 
they tend to generate clouds of soil dust which can become 
an issue for the farmer in case of dry soil. Limitation of 
PPP dispersal at the time of planting may also depend on 
the improvement of the seed itself (adhesion and applied 
dose) (Nuyttens et al. 2013). The use of water filters is also 
discussed. Pochi et al. (2015) proposed a system equipped 
with a pollen filter and an electrostatic filter dedicated to par-
ticles with diameters greater than 5 µm. Finally, Foque et al. 
(2017) observed the deterioration of the coating as early as 
the seed bag filling step and during its subsequent handling, 
thus recommending all these steps to be carried out with 
care. Moreover, as an important reminder, the use of treated 

Fig. 2  Main levers for action to decrease PPP transfers during application
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seeds is also responsible for the intoxication of seed-eating 
organisms (Millot et al. 2017), while seed treatment does not 
address issues related to foliar pathogens, weeds or perennial 
treatment, etc.

Improvement of formulations

To limit the quantities of PPP applied and to increase their 
efficacy, the improvement of the formulation (wettable 
powder, suspension concentrate and emulsifiable con-
centrate) of the products is currently under development, 
including the use of nanoparticles (Fig. 2). The formula-
tions contain different solvents and co-formulants, in vari-
able concentrations. Adjuvants can also be added to the 
tank mixture before application. However, little is known 
about the impact of formulations and adjuvants on the 
transfer of PPPs to the environment (Mesnage et al. 2019) 
(Fig.  3). The formulation or the adjuvants that would 
modify the behaviour of the active substance, for example 
by promoting the penetration of the compound into the 
plant, should affect volatilization. This was demonstrated 
by Lichiheb et al. (2015) who compared the behaviour of 
pure and formulated compounds on wheat leaves under 
laboratory conditions or by Houbraken et al. (2018) who 
identified that the volatility of the solvent within the 

formulation may affect the volatility of the active sub-
stance. The effect of an adjuvant on the volatility of the 
active substance can depend upon the considered active 
substance (Houbraken et al. 2018). In addition, the effect 
of co-formulants depends on the temperature (Das and 
Hageman 2020) but is also influenced by the diversity of 
situations. In addition to their wetting, spreading, adhe-
sion, retention and washoff resistance functions, as well 
as their role in improving the bioavailability of the active 
substance, adjuvants could also play a role in reducing 
drift (Xu et al. 2011; Zheng et al. 2018). In order to limit 
drift, adjuvants and/or co-formulants are used for increas-
ing drop size by modifying the viscosity and the surface 
tension of the spray mix. However, due to the large diver-
sity in active substance/formulation mixtures or adjuvants, 
the application of systematic tests is challenging. Moreo-
ver, the physicochemical effects of co-formulant/adjuvant 
often appear to have many limitations when compared to 
those of an anti-drift nozzle.

Among the most recent formulations, nanopesticides 
cover a wide variety of products that combine several sur-
factants, polymers and nanoparticles in the nanometer range. 
These nanoformulations improve the apparent solubility of 
poorly soluble active substances, their gradual release and/
or their protection against premature degradation (Kah et al. 

Fig. 3  PPP transfers at plot scale and main levers for action to decrease transfers
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2013). They can thus reduce PPP loading but could also lead 
to issues related to a more efficient transport and greater 
persistence in soils, waters and organisms (Kumar et al. 
2019). To date, limited research has been undertaken on the 
overall assessment of the fate of nanoformulation shells in 
soil and the environment following their release, as well as 
their redistribution in plants after uptake. Furthermore, there 
are yet no studies that evaluate the environmental exposure 
(Tleuova et al. 2020).

Finally, drift reduction is currently essentially achieved 
via technologies (nozzles or complete devices) (see above) 
against which the role and benefit of adjuvants and co-for-
mulants are difficult to generalize due to the great diversity 
of formulations and to the scarcity of results available in the 
literature. Knowledge in co-formulation and adjuvant effects 
on volatilization is still very partial due to the complexity of 
their effects and to the lack of information on the composi-
tion of formulations (Das and Hageman 2020). The influence 
of the formulation on the water transfer of PPPs still needs 
to be better characterized, especially for new technologies 
such as nano-formulations.

Role of meteorological conditions

Meteorological conditions during or very close to the time of 
application affect the risk of PPP transfer by drift or volatili-
zation (Butler Ellis et al. 2010). They also have a direct influ-
ence on PPP interception by the canopy and thus on their 
efficacy (Augusto et al. 2010; Bock et al. 2020) (Fig. 2). The 
influence of wind speed and direction on drift is acknowl-
edged, but only the maximum wind speed is monitored in 
France and most European countries, with a threshold value 
of 19 km/h at 10 m height in France (French Republic 2006). 
It is noteworthy that although emissions are limited when 
spraying is carried out under very light wind conditions 
(especially at night), the concentrations produced locally 
can be higher due to low atmospheric dispersion (van den 
Berg et al. 2016b; van den Berg et al. 2016a; Zivan et al. 
2017). Recommendations also concern the relative humidity: 
it should not be too low during the treatment in order to limit 
water evaporation from the droplets and thus their potential 
for drifting (Bedos et al. 2020).

The water transfer of PPPs also depends upon weather 
conditions. In particular, runoff due to the effect of these 
conditions on soil moisture at the time of application affects 
the distribution of the product between the soil solution and 
the solid matrix. More importantly the infiltration capac-
ity of the soil is affected by runoff (with more or less rapid 
water saturation of the surface layers). Hence, results from 
the literature review recommend that treatment on a soil that 
is neither too dry nor too wet should be preferred (Kobier-
ska et al. 2020; Willkommen et al. 2019). Nevertheless, the 
quantity and especially the date of occurrence of rainfall 

after application plays a crucial role in the risk of surface 
transfer, both in dissolved and in particulate phases. There-
fore, when possible, an effective lever would be to avoid 
treatments before a rainfall. In addition, when rainfall occurs 
shortly after an application, washoff from treated leaves is 
also capable of transferring PPPs to the soil compartment 
(Benoit et al. 2023). Incidentally, note that PPP application 
is prohibited in France when rainfall intensity is greater than 
8 mm per hour at the time of application (French Republic 
2019).

Part conclusion regarding the control of PPP input 
and dispersion during application

To conclude, the role of the application phase of PPPs is 
crucial concerning their impacts on the environment. This 
involves the applied dose and the manner with which this 
dose is distributed across the receiving compartments (soil, 
water, vegetation and air). Climatic conditions (mainly wind 
and precipitation) also play a significant role in the disper-
sion of PPPs at the time of application. However, uncertain-
ties still remain:

1. The relationship between the dose received (physical 
deposition) and the efficacy of PPPs is still hardly docu-
mented, in particular because of the large variability in 
results, the mode of action of PPPs and climatic hazards, 
although improvements in the interception efficiency of 
the canopy could lead to dose reduction.

2. For perennial crops, the method for expressing doses by 
cadastral area reduces the possibilities of dose reduction 
(the recent inclusion of the leaf wall area (LWA) in PPP 
registration dossiers is a first step).

3. The role of adjuvants and co-formulants and their 
benefits with respect to drift are difficult to generalize 
because of the great diversity of formulations.

4. The consideration of atmospheric conditions for assess-
ing the risk of drift is subject to approximations in the 
quantification and sampling of wind strength and direc-
tion.

5. The mass balance at application still remains difficult 
to evaluate (distribution between soil, water, vegetation 
and air).

Finally, this literature review highlights the significant 
lack of studies focusing on the relevance of substituting 
synthetic PPP applications with nanopesticides or biopesti-
cides. Indeed, their environmental behaviour is still largely 
unknown and requires further investigations (Amichot et al. 
2024).
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Reduction of PPP transfers after their 
application at the plot scale

Agricultural practices that limit the transfer of PPPs at plot 
levels cannot be dissociated from the technical operations 
that in turn influence factors affecting their transfers, such 
as the choice of PPPs, the amounts of PPPs applied, the soil 
cover, soil structure and soil organic matter content (Fig. 3) 
(Alletto et al. 2010). The transfer pathways are not unique 
and the limitation of one of them may favour another. It is 
therefore important to evaluate agricultural practices with 
respect to all the transfer pathways but also by consider-
ing their role in intercepting, retaining and degrading PPPs 
after application (Alletto et al. 2010). Transfers also strongly 
depend on the physicochemical properties of the active sub-
stance and on the ecosystems where it is applied, i.e., tem-
perate vs tropical (Daam and Van den Brink 2010).

The soil of a treated plot and its vegetation cover define 
the fate of PPPs (adsorption, degradation, storage and trans-
fers) (Alletto et al. 2010). The PPPs applied to crop foliage 
and/or weeds can transfer to the atmosphere by volatilization 
or to the soil by washoff from the leaves due to rain.

After application, the proportion of PPPs transferred from 
the soil to the different environmental compartments, rela-
tive to the amount applied is still hardly known. However, 
a few orders of magnitude are available: export reaching 
15% by runoff in extreme situations (heavy rainfall just after 
treatment on a low permeability soil), 0.1% by agricultural 
drainage (Kladivko et al. 2001), 1% by infiltration and up to 
60% by volatilization (Karlsson and Arvidsson 2015).

Consequently, the management of the soil compartment, 
which is one of the first filters for reducing post-application 
PPP transfers, represents a primary control lever.

Soil cover

Soil cover refers to various situations, i.e., the presence of 
a cultivated plant canopy, mulch of natural or non-natural 
origin, or cover crop. It plays a key role in limiting PPP 
transfers (Jha et al. 2017; Pavlidis and Tsihrintzis 2018): 
indeed, thicker soil coverage tends to reduce PPP transfers 
to environmental compartments (Fig. 3).

When the soil is covered by a crop (main crop and cover 
crop), the risks of PPP transfer from the soil compartment to 
aquatic environments are reduced. However, the entrapment 
of PPPs in plant tissues (crops and/or weeds) also builds a 
protection against their degradation by microorganisms, thus 
allowing for their persistence to increase (Alletto et al. 2010; 
Mamy et al. 2016). Subsequent to crop or weed senescence, 
trapped PPPs, if not yet degraded, can be released into the 
environment (Mamy et al. 2016).

Soil cover can also be sustained with the presence of a 
naturally occurring mulch (crop residue or cover crop grown 
and destroyed for this purpose) which lessens surface runoff 
(Alletto et al. 2010). In contrast, the ability of mulches to 
limit PPP leaching is a source of controversy: indeed, on one 
hand, maintenance of high soil moisture may contribute to 
the vertical transfer of PPPs (Lammoglia et al. 2017). The 
presence of mulch is also likely to favour PPP volatilization, 
since the surface area for exchange with the atmosphere is 
increased. On the other hand, its presence alters temperature 
and moisture conditions as well as the availability of PPP 
for transfers by possible control of sorption on mulch or by 
degradation. The intensity of degradation can vary in the 
presence of mulch (Prueger et al. 1999). Finally, the effects 
of mulch on cumulative volatilization losses have not yet 
been sufficiently assessed (Benoit et al. 2023).

Unlike naturally occurring mulch, plastic mulch (used 
for weed control in vegetable or pineapple crops, for exam-
ple) causes significant PPP transfer due to runoff (Steinmetz 
et al. 2016). In addition, the reprocessing of plastics is com-
plex and their degradation presents a risk of environmental 
contamination by debris (nano- or micro-plastics) that are 
contaminated by PPPs. Consequently, in order to limit risks 
in the case of cultivation systems requiring a permanent soil 
cover, plastic mulch should be substituted by natural mulch, 
which is more porous.

The preservation and/or the constitution of a mulch after 
a crop is not always possible, while the sequence of crops is 
not always systematic (except in areas where the presence 
of cover crops is mandatory, in particular to protect drinking 
water catchment areas). This may result in leaving the soil 
fallow for a variable length of time. In this respect, resident 
vegetation cover could play an important role in limiting 
PPP transfers.

Soil tillage

Tillage leads, more or less temporarily, to the modification 
of soil surface properties, which in turn affects the fate of 
applied PPPs (Morris et al. 2010; Mottes et al. 2014).

Overall, techniques that limit tillage (such as conservation 
agriculture, which combines reduced tillage, cover crop and 
crop diversification) are more resilient than those that prac-
tise tillage (Fig. 3). Indeed, no-till contributes to the mainte-
nance of soil fertility through increased surface organic mat-
ter content, increased microbial activity and stabilization of 
pH and moisture, thus facilitating the interception, retention 
and degradation of PPPs (Alletto et al. 2010; Dairon et al. 
2017). These techniques also limit erosion and hence PPP 
transfer to particles during surface runoff (Potter et al. 2015).

However, the absence of tillage also leads to the forma-
tion of preferential transfer pathways (macroporosity) that 
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favour the leaching of PPPs (Alletto et al. 2010). Moreo-
ver systems based on reduced tillage may also induce an 
increase in the use of herbicides, glyphosate in particular, 
and molluscicides that are likely to reach groundwater, as 
well as their transformation products (Benoit et al. 2014). 
Sustainable solutions therefore need to be developed in order 
to avoid the intensification of herbicide applications. Fur-
thermore, the incorporation of a surface-applied PPP within 
the first cm of soil could reduce the volatilization of com-
pounds as discussed in Aubertot et al. (2005) and Benoit 
et al. (2023), and as measured by Bedos et al. (2006) for 
trifluralin applied to bare soil.

Organic matter management: example of biochar 
addition

To compensate for the loss of soil fertility due to a decrease 
in organic matter content and to limit the use of synthetic 
fertilizers, the addition of exogenous organic matter is 
becoming an increasingly widespread practice. However, the 
use of these materials from very diverse origins and nature 
can in turn impact the environment (Houot et al. 2014).

Over recent years, the use of biochar to store carbon in 
soils and mitigate climate change has grown significantly 
(Bibi and Rahman 2023). Biochars are carbonaceous sub-
stances, resulting from the pyrolysis of biomass in an oxy-
gen-limited atmosphere, which have the particularity of 
being recalcitrant to degradation. The amendment of soil 
with biochar aims at improving the physical properties of a 
soil, in particular its capacity for water retention and cation 
exchange. For example, the PPP sorption capacity of bio-
char is two to three fold that of soil (Blanco-Canqui 2019) 
(Fig. 3).

The primary mechanisms governing the reduction of 
PPP pollution with biochar include: (1) adsorption of PPPs; 
(2) decrease in the desorption of adsorbed PPPs; and (3) 
enhancement of the physical, chemical and biological prop-
erties of the soil (Khorram et al. 2016). Blanco-Canqui 
(2019) and Khorram et al. (2016) demonstrated that with 
the promotion of PPP entrapment in biochar, PPPs were less 
likely to leach. The subsequent improvement of the physical 
properties of the soil surface (porosity and water retention) 
with biochar would also greatly reduce erosion phenom-
ena and thus reduce the transfer of PPPs by erosive runoff 
(Blanco-Canqui 2019). Biochar could equally be applied for 
sequestering PPP residues in contaminated soils and thus 
reduce their uptake by plants (Khorram et al. 2016).

However, studies have also highlighted diverse effects 
of biochar on PPP sorption which depend on the type of 
biochar raw material and particle size, on the time after 
application, the application rate and the pyrolysis process 
(Blanco-Canqui 2019). The increased retention of PPPs in 

biochar reduces their bioavailability and degradation (Khor-
ram et al. 2016). Also, the efficacy of biochar-amended soil 
to remove PPPs decreases their efficacy with respect to their 
initial targets (weeds and fungi) (Yavari et al. 2015). Finally, 
field studies still need to be conducted in order to investi-
gate the effects of biochar on PPP transfers in the field over 
long periods of time. Aging time is underlined by Hou et al. 
(2024) as a long term process which affect sorption capacity 
without giving any time duration.

Subsurface drainage

The agricultural subsurface drainage technique aims at 
removing excess winter water from hydromorphic soils 
using buried perforated pipes (Tournebize et al. 2020). It 
is acknowledged that PPP losses through drainage systems, 
while not negligible, represent averagely 0.1% of the applied 
amount (Kladivko et al. 2001). This is lesser than losses 
from runoff and erosion but greater than the losses from 
leaching to aquifers (Gramlich et al. 2018). The critical sea-
sons overlapping agricultural practices are autumn, mainly 
for weed control on winter crops and spring, for all crops 
when drained flows do not systematically flow every year. 
Consequently, most measures for mitigating leaching losses 
at plot scales (tillage, soil cover etc.) should also reduce 
drainage losses, similarly to all recommended measures for 
mitigating runoff and erosion losses (Kobierska et al. 2020) 
(Fig. 3). However, the main lever for avoiding PPP loss 
through drainage would be to restrict the times of applica-
tion to periods when drainage is not active and to take the 
soil moisture content into account: indeed, the drier the soil, 
the less vertical the PPP transfer (Willkommen et al. 2019). 
The Soil Wetness Index (SWI) (Saleem and Salvucci 2002) 
could be a tool for scheduling PPP applications based on the 
water filling of drained soil profiles.

Irrigation

Inappropriate irrigation practices or those carried out dur-
ing a risky period of transfer could have significant conse-
quences on PPP transfers. Indeed, they could be intensified 
by runoff (Davis et al. 2013) and leaching (López-Piñeiro 
et al. 2017). Therefore, to limit transfers, irrigation practices 
would have to be controlled (reduced), especially on mulch 
when they aim at promoting the action (soil penetration) 
of pre-emergent herbicides for non-ponded crops. For pon-
ded crops such as paddy fields, Phong et al. (2010) recom-
mended strict water management by water height control at 
the plot outlet.

Chemigation is a new technique to apply PPPs using fixed 
delivery systems above the canopy of orchards or vineyards. 
These systems are also used for irrigation (Sinha et al. 2019; 
Mozzanini et al. 2024). At the moment, most of the studies 
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concern the feasibility and performance for plant protec-
tion, and there is a need for more information on potential 
environmental impacts of this technique.

Mechanized field operations

Farm machinery traffic in plots results in soil compac-
tion that promotes erosion, runoff and the transfer of PPPs 
adsorbed to soil particles (Baumhardt et al. 2015). Meas-
ures to limit compaction include: (1) reducing tillage, pro-
vided that the disadvantages presented above can be limited 
through conservation tillage practices. These would promote 
the maintenance of protective cover and generate a stable 
and functional soil structure that helps reduce PPP trans-
fer; (2) the adoption of permanent lane organization with 
precise remote control tools in tractors: lane organization 
(also called controlled traffic farming (CTF)) or loosening 
(Vuaille et al. 2021) limits compacted areas, preserving soil 
functions such as infiltration and water retention, reducing 
runoff and therefore PPP losses. Moreover, early application 
of PPPs in spot treatment on strips combined with controlled 
mechanization traffic could also contribute to limit the risk 
of PPP transfer through runoff (Masters et al. 2013); and 
(3) the choice of farm machinery: weight, number and load 
of axels.

Role of meteorological conditions

As discussed above, the climate plays an important role in 
the transfer of PPPs to water by affecting, among others, 
the moisture of the soil (Fig. 3). Periods of heavy rainfall 
(intensity and amounts) after application would generate 
favourable conditions for the horizontal and vertical trans-
fer of PPPs. The effects of meteorological conditions on PPP 
post-application volatilization dynamics are complex and 
not yet fully interpreted: while an increase in temperature 
generally leads to an increase in volatilization, this effect 
is limited by soil surface drying conditions that can cause 
adsorption of some compounds from the gas phase to the 
soil, thus punctually limiting their volatilization (Garcia 
et al. 2014; Prueger et al. 2017). All these effects related to 
meteorological conditions are poorly known under temperate 
climates and even less under tropical climates (Daam and 
Van den Brink 2010; Gentil et al. 2020).

Remediation

When an environment is contaminated with PPPs (soil in 
particular), biotic remediation (bioremediation, phytore-
mediation and rhizoremediation) represents a cost-effec-
tive (cost/efficiency), non-invasive and acceptable means 
of removing polluting substances (Arthur et  al. 2005; 
Sarker et al. 2024) (Fig. 3). Bioremediation is the partial or 

complete conversion of PPP to its elemental constituents by 
soil microorganisms (Megharaj et al. 2011). Rhizoremedia-
tion within the rhizosphere and phytoremediation involv-
ing plants also metabolize and degrade PPPs (Eevers et al. 
2017). However, some PPPs may be recalcitrant to degra-
dation and/or toxic for plants and microorganisms that lack 
the necessary enzymes (Eevers et al. 2017). Moreover, in 
the case of phytoremediation, the plants must be collected 
and incinerated or composted to remove the PPPs. Finally, 
at present only a few studies have been conducted under 
field conditions in order to assess the efficiency of these 
techniques in decreasing PPP transfers.

There are also many abiotic remediation methods which 
could be used in situ. These include the use of surfactants to 
promote PPP leaching, vitrification, isolation, containment 
with physical barriers, but they are known to impact the 
structure and properties of the soil (Morillo and Villaverde 
2017). Ex situ methods are equally available, such as excava-
tion, thermal treatment, chemical extraction, or encapsula-
tion, but they are generally expensive.

A combination of biotic and abiotic methods could 
enhance PPP degradation processes (Fenner et al. 2013); 
however, this has not yet been tested in cultivated soils.

Management of PPP residues left over in the spray 
tank (tank bottom)

At farm scales, even when all recommended precautions are 
taken during the filling and rinsing of the tank and during the 
cleaning process of the sprayer, the risks of generating PPP 
point sources that contaminate surface water and groundwa-
ter cannot be totally eliminated (Fig. 3). The management of 
empty packaging is the responsibility of PPP manufactur-
ers. The poor management of PPP residues left over in the 
spray tank could contribute to significant risks of PPP trans-
fers, via controllable point source pollution phenomena. In 
France, these risks can be prevented thanks to an acknowl-
edged list of efficient treatment processes established for 
PPP effluents (French Ministry of Ecological Transition and 
Ecology 2018).

Among these processes, biobeds provide an effective 
response to the issues of point-source pollution related to 
PPPs because they significantly reduce contamination result-
ing from the cleaning of treatment equipment and manage-
ment of tank residues (Fig. 3). These simple and inexpensive 
devices were invented in Sweden at the beginning of the 
1990s and imported by many countries. They have under-
gone several adaptations and have been given different 
names (such as Phytobac® or biobac in France) (Castillo 
et al. 2008).

The biobed consists of a pit filled with a substrate 
designed to retain the PPPs of the PPP effluent poured into 
it. This substrate contains microorganisms, especially fungi, 
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which can decompose the substances thanks to their enzy-
matic degradation power (Adak et al. 2020; Rodríguez-Rod-
ríguez et al. 2013). Biobeds thus involve complex mecha-
nisms combining the stimulation of metabolic activity with 
sorption processes (Karanasios et al. 2012).

For a proper functioning of biobeds, two parameters 
should be considered: (1) the composition of the substrate 
(biomix), which must be pre-composted and validated 
locally according to the materials used and to the PPPs to 
be degraded and (2) the management of the humidity of the 
biomix in order to favour optimal microbial activity (Castillo 
et al. 2008; de Roffignac et al. 2008; Karanasios et al. 2012).

The required maturation time in the biobed ranges 
between 1 and 8 months, with contrasting efficacy accord-
ing to the PPPs. The mixture is then redistributed across the 
plots, although no studies are available where a thorough 
characterization of the nature of its impacts on the biodiver-
sity and functions of soil (micro)-organisms has been carried 
out. Losses of PPPs through volatilization may also occur 
from biobeds (Córdova-Méndez et al. 2021).

Part conclusion regarding the reduction of PPP 
transfers after their application at the plot scale

At plot levels, the levers for action identified to reduce PPP 
transfers are based on the maintenance of soil cover, the 
reduction in tillage, the organization of permanent machin-
ery traffic pathways and on rational irrigation (Fig. 3). 
Remediation (biotic and/or abiotic) is a potential solution for 
rehabilitating contaminated environments. However, there 
is still a need to acquire (or deepen) knowledge on: (1) the 
effects of mulch on leaching and volatilization of PPPs; (2) 
the effects of no-till on preferential PPP transfers; (3) the 
effects of biochar on the fate of PPPs in field conditions; 
(4) the effects of formulations on the fate of PPPs; (5) the 
effects of meteorological conditions on the temporal dynam-
ics of volatilization of PPPs applied to soil or plant cover; 
(6) the efficacy of remediation techniques in field condi-
tions; and (7) the effect of different levers on the transfer of 
biopesticides.

The management of PPP transfers and impacts also 
requires a vision beyond the plot, at landscape and territory 
scales including the soil-water-air continuum.

Reduction of PPP transfers at the landscape 
scale

In addition to actions that limit the transfer of PPPs at 
agricultural plot scales, landscape infrastructures and spa-
tial organization could play an important role in mitigating 
the transfer of PPPs between treated plots and non-target 
areas (Prosser et al. 2020).

Buffer zones (BZs) act as an interface between agri-
cultural sites and non-target areas (neighbourhood, rivers 
and other ecosystems). They are divided into so-called 
dry buffer zones (DBZs), such as grassed strips, hedges, 
groves or temporary flow vegetated ditches and so-called 
wet buffer zones, that can be either natural (WBZs) such 
as marshes and lagoons, or artificial (AWBZs) such as 
stormwater basins or constructed wetlands. The choice and 
efficacy of BZs depend strongly on the main processes 
during which the substances migrate from treated plots 
(surface or underground water and/or air transfers) but 
also on the intrinsic characteristics of these substances, 
on their location in the watershed relative to treated areas, 
on the physicochemical characteristics of the molecules 
which govern their behaviour in the BZ and finally, on 
the application techniques, especially when considering 
aerial transfers (Fig. 4). Although most studies focus on 
the mitigation of surface transfers by buffer zones, some 
provide results relative to the fate of PPPs in the soil and 
in the underlying groundwater, while others focus on aerial 
transfers.

The landscape, as a whole, could be a lever for action 
to limit PPP dispersion, in addition to the implementation 
of the landscape infrastructure described above. In order to 
achieve an overall reduction of PPP use, landscape should be 
taken into account by adapting agricultural practices accord-
ing to (1) the vulnerability of the different areas to trans-
fer processes (considering soil properties and cover, slope, 
drainage, etc.); (2) the adjustment of the spatio-temporal 
organization of crops and agricultural practices; (3) the agro-
environmental diversity of the plots; and (4) the location 
of landscape infrastructures. These levers would sustain an 
increase in the resilience of the landscape to PPP transfer 
processes (Fig. 4).

Dry buffer zones and water transfer reduction

Grassed strips

Grassed strips appeared in the French legislation in 1992 
as part of agro-environmental measures to intercept surface 
runoff and limit the horizontal transfer of PPPs by runoff 
(Fig. 4). Their generalization (5 m minimum of untreated 
and permanently vegetated strips) along waterways has 
become mandatory since 2009 via the Common Agricul-
tural Policy within the framework of Good Agricultural and 
Environmental Conditions (GAEC).

On average, the efficacy of grassed strips is greater than 
50% for all PPPs over a width larger than 20 m (Prosser 
et al. 2020).

The major processes involved in the reduction of PPP 
fluxes and concentrations within a grassed strip buffer 
zone mainly involve infiltration but also sedimentation, 
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adsorption, dilution and degradation (Benoit et al. 2003; 
Carretta et al. 2017). Vegetation plays an important role 
thanks to its ability to promote deposition and filtration of 
contaminated solid particles and infiltration. It is also capa-
ble of adsorbing PPPs at the surface of the DBZ or into the 
root zone as a result of slowing surface runoff (Stehle et al. 
2016) as well as a high organic matter content that promotes 
PPP retention and reduces leaching (Dousset et al. 2010). 
Measurements have highlighted the rapid appearance of 
transformation products in the surface horizons of DBZs, 
some being correlated with the formation of non-extractable 
(bound) residues that could be released later over a rela-
tively long term (Benoit et al. 2003). There is still a need for 
research combining the monitoring of parent molecules and 
of transformation products in runoff under natural condi-
tions. The long-term risk of the vertical transfer of PPPs and 
their transformation products to groundwater and remobili-
zation also remains insufficiently documented.

The dimensions of the grassed strip buffer zone are an 
important factor that should be adapted according to local 
conditions. In particular, the volumes of incoming runoff, 
the infiltration capacity of the DBZ, the residence time of 
PPPs and the adsorption capacity of the DBZ (which depend 
on the surface area contributing to runoff upstream of the 
DBZ, the slope of the hillside, the nature and texture of the 
soil and the composition and structure of the vegetation) 

should be taken into account. Thus, for most situations, a 
standard 5 m width DBZ is unlikely to be sufficient to ensure 
a good mitigation of runoff transfer (Prosser et al. 2020). The 
BUVARD tool (Catalogne et al. 2018) takes into account 
several environmental factors for DBZ sizing. It could be 
mobilized to help define the necessary width of grassed strip 
corresponding to the required runoff abatement efficiency, 
based on the upstream catchment area and on the DBZ soil 
and rainfall characteristics.

The location of the grassed strips within the watershed 
also defines their efficacy to protect a river from PPP con-
tamination. They should be established sufficiently upstream 
to limit runoff contributing surfaces and runoff concentration 
in erosion rills, gullies and channels (Stehle et al. 2016). 
Positioning at the bottom of the slope would cause DBZ 
dysfunction due to the greater risk of runoff concentration 
in channel areas. In addition, proximity to the stream would 
increase the risk of hydromorphy, limiting DBZ infiltration 
capacity and increasing the risk of contamination of the 
shallow water table. Finally, it remains crucial to minimize 
preferential flow paths (lateral and vertical) and avoid soil 
compaction or saturation within the DBZ, since these fea-
tures greatly limit its efficacy. The location should therefore 
be the subject of a hydrological diagnosis at the scale of 
the catchment area and of the site of implementation of the 
DBZ itself.

Fig. 4  PPP transfers at landscape scale and main levers for action to reduce these transfers
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Forest

The presence of bushes and trees in a DBZ can be benefi-
cial for the improvement of its performance in limiting PPP 
transfer (Fig. 4) (Passeport et al. 2014). Indeed, in compari-
son to grassed strip buffer zones, forest buffer zones boast 
a higher infiltration capacity thanks to the development of 
their root system. They are thus likely to reduce herbicide 
and fungicide fluxes in runoff by 55 to 100%, in merely 
6-m-wide strips (Passeport et al. 2011, 2014, 2013; Pavlidis 
and Tsihrintzis 2018). However, the scarcity of available 
studies, especially on field conditions, does not allow for 
generalization of results beyond the studied cases nor does it 
allow for identification of key elements for sizing and man-
aging these wooded areas.

Hedgerows

Hedgerows (including hedgerows along embankments) are 
a particularly significant type of green infrastructure to con-
sider when implementing a strategy to limit the transfer of 
PPPs to rivers (Fig. 4). As in forest buffer zones, the pres-
ence of trees favours runoff infiltration through the devel-
oped root system as well as the retention of PPPs in the 
surface layers of soil rich in organic matter (Carluer et al. 
2019). However, the hedgerows should be positioned so as 
to intercept runoff from treated plots (the BUVARD tool 
(Catalogne et al. 2018) previously mentioned can help iden-
tify favourable implantation contexts to limit runoff). Fur-
thermore, the increased infiltration capacity of a hedgerow, 
which depends on its width, must be sufficient in order to 
avoid the formation of hydraulic by-passes. The implementa-
tion of double hedgerows could be a better choice in cases 
of strong erosive runoff. While the presence of a bank is 
sufficient to promote infiltration upstream of the hedgerow 
if it is continuous (without drainage holes), the presence of 
ditches upstream crossing the hedgerow could offset its role 
in attenuating surface flows by channelling runoff directly 
downstream. To this date, one of the major issues concern-
ing the best possible implementation of these strategies for 
limiting the water transfer of PPPs, is the evaluation of the 
extent to which leached flows can contribute to contamina-
tion of an underlying water table, particularly a shallow one, 
along the edge of a river. The purification potential of hedge-
rows with respect to PPPs has yet to be characterized and 
current results from grassed strips and forest buffer zones 
can only be extrapolated to these systems.

The role of ditches

Agricultural ditches are most often intended for evacuating 
excess water (buried drainage water or runoff) from cultiva-
tion plots (Fig. 4). They can constitute hydraulic by-passes 

between treated plots and rivers, especially if they have been 
designed to accelerate runoff from the plots. The value of 
vegetated ditches in mitigating PPP concentrations has 
been acknowledged (20 to 99% reduction in PPP concentra-
tions) (Kumwimba et al. 2018). However, this concentration 
decrease does not only depend on the properties of the PPPs 
and the initial PPP concentration but also on the features 
of the ditch and environment (Werner et al. 2010). Factors 
that contribute to the capacity of ditches to minimize down-
stream PPP fluxes are related to the specific characteristics 
of each ditch (porosity of bottom and sides, organic matter 
content, vegetation cover, presence of litter, etc.), to hydro-
climatic conditions (inflow volumes and flow velocities) 
and to management concerns (maintenance, inflow control, 
etc.). In particular, the key factors to be optimized include 
increased residence time and sorption. Hence, the creation of 
weirs (flow control at the drainage outlet) to slow down the 
flow, a sufficiently dense vegetation to facilitate the slowing 
down, dispersion, retention, but also infiltration are recom-
mended. As for forest buffer zones, further field studies are 
required to better define the conditions for optimal efficacy 
in various contexts. These involve the infiltration capacity at 
the bottom of the ditch, the choice for the type of vegetation 
cover, the sorption properties of the substrate, the appropri-
ate length and width of the ditches, the level of connectivity 
of upstream contributing flows and the effect of the season 
(Dollinger et al. 2018).

Finally, DBZ width is the most widely promoted indi-
cator in European legislations for limiting PPP transfer. 
However, due to the diversity of factors involved, the more 
or less channelized nature of runoff and the high depend-
ence of DBZ efficacy on local parameters (soil, weather, 
topography, vegetation, hydraulic by-passes, etc.), the DBZ 
width alone remains insufficient for implementing or evalu-
ating the efficacy of a DBZ with respect to runoff (Gene 
et al. 2019). In addition, it is also crucial to account for 
the surface area of the contributing area, the hydrological 
functioning of the upstream watershed, the infiltration and 
sorption capacity of the buffer zone, as well as the intrinsic 
properties of the PPPs. The literature review also identified 
knowledge gaps regarding (1) the efficacy of DBZs with 
respect to seed treatments, new molecules, biopesticides 
and nanoparticles; (2) the fate of PPPs infiltrated into DBZs 
with respect to the groundwater to be preserved and to their 
long term behaviour (degradation, fate of transformation 
products and remobilization); (3) global studies at the DBZ 
level (considering the soil and vegetation as an ecosystem 
and studying the influence of macro-invertebrates on soil 
structuring and of micro-organisms, combined with plants 
on the degradation of PPPs); and (4) feedback on the spe-
cific positive effects of DBZs on water quality at the water-
shed level. For the latter question, major obstacles include 
the difficulty in overcoming confounding factors and the 
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necessity to achieve a representative assessment of the true 
evolution of PPP flows at required time scales. New PPP 
measurement tools, such as passive integrative samplers, can 
contribute towards these objectives, provided that they are 
complemented by appropriate hydrometeorological monitor-
ing and sufficiently detailed knowledge of the actions and 
practices actually implemented by farmers at the watershed 
level (Chow et al. 2020).

Dry buffer zones and aerial transfer reduction

Atmospheric dispersion carries PPPs downstream from the 
treated plot at various distances, causing air-contamination 
due to dispersed droplets (aerial spray drift) or to gas from 
volatilization. Contamination of non-target ecosystems also 
occurs by deposition of droplets (sedimentary spray drift) or 
gas (dry deposition) (Fig. 4). The concentration and depo-
sition levels decrease with distance from the treated plot 
due to atmospheric dilution. Therefore, any structure that 
increases the distance between the edge of the treated plot 
and the ecosystem to be protected should generate a zone 
where PPP air concentrations and deposition are lower than 
in the vicinity of the treated plot (van de Zande et al. 2004).

Hedgerows represent natural physical barriers that reduce 
the atmospheric dispersion of PPPs. Vertical artificial sys-
tems, such as windbreaks, can also filter the air mass by 
intercepting droplets and modifying airflow by decreasing 
wind speed (Ucar and Hall 2001; van de Zande et al. 2004).

The efficacy of physical barriers (hedges and nets) in lim-
iting atmospheric dispersion of PPPs downwind of treated 
plots is generally verified by measurements. The efficiency 
of natural hedges to restrain sedimentary spray drift can 
range from 45 to 90% according to the distances downwind 
from the treated field to the type of crops and to their growth 
stage. As for artificial barriers, their efficiency depends on 
type of barriers, crops and on the distance downwind of 
the treated field, ranging from -55 to almost 100% (Bedos 
et al. 2020). Nevertheless, the efficacy of physical barriers 
depends on (1) the porosity of the barrier to avoid a “wall 
effect” that would generate a small zone with higher concen-
tration and deposition downwind of the hedge (this implies 
the necessity for a compromise between the interception 
capability of drops and the porosity to the airflow (Ruthy 
et al. 2019)); (2) the height, with a variety of recommen-
dations (e.g., at least equal to the spray height according 
to van de Zande et al. (2004) or twice as high as the crop 
according to Ucar and Hall (2001)); (3) the width or number 
of tree rows as well as the internal structure of the hedge 
(i.e., leaf architecture) (Ucar and Hall 2001), its continuity 
along its length and its orientation relative to the dominating 
wind direction and relative to the crop rows (Lemieux and 
Vézina 2014); (4) the composition of the natural hedge and 
the suitability of its vegetative development during treatment 

periods (van de Zande et al. 2004); and (5) the location of 
the hedgerow in relation to the last treated row.

It is noteworthy that the hedgerows themselves are sub-
ject to PPP contamination, not only like all other natural 
ecosystems but also when they are used as a filter to limit 
PPP dispersion downwind of the treated field. This issue was 
previously highlighted by Aubertot et al. (2005). Moreover, 
PPP deposition via rainfall leaching along tree trunks can 
generate significant deposition underneath the hedgerow, 
consequently potentially contributing to surface water con-
tamination (Rice et al. 2016) and exposure to organisms.

Until present, it has been challenging to define precise 
recommendations concerning the most suitable hedgerow 
typologies. This arises from the variability in observation 
conditions during experiments (i.e., hedgerow type, develop-
ment stage and weather conditions) and the evaluation meth-
odologies employed (Bedos et al. 2020). Since the inter-
ception capacity of hedges has been much less studied than 
the effect of hedges on airflow, further investigations are 
still required. Additionally, experiments have often focused 
on the efficacy of physical barriers in limiting sedimentary 
spray drift, with more recent work on aerial spray drift 
(Ruthy et al. 2019). Further exploration of this component 
would be necessary to assess whether a lever for reducing 
sedimentary spray drift could reduce aerial spray drift in the 
same proportion. There is also still a lack of studies on the 
ability of hedges to filter the gas phase dispersed from the 
volatilized compound fraction.

Wet buffer zones

In order to restrict PPP flows towards surface water, WBZs 
(lagoons, mangroves, marshes, etc.) and AWBZs (con-
structed ecosystems designed to mimic the natural con-
ditions and processes of wetlands) are likely to intercept 
channelized runoff or agricultural drainage (Fig. 4). Despite 
the value of these wetland buffer zones for PPP risk man-
agement, work on the role of WBZs and AWBZs in PPP 
interception is recent (O’Geen et al. 2010).

Several reviews suggest the removal efficiency values of 
wet buffer zones between the inlet and the outlet represent 
above 80% of mass reduction for a majority of PPPs (par-
ticularly those that tend to be strongly adsorbed), but less 
than 40% for the remaining compounds (Stehle et al. 2016; 
Vymazal and Bfezinova 2015). In some cases, negative effi-
ciencies have also been observed, resulting from PPP release 
phenomena due to remobilization during strong flood events 
and/or desorption from sediment for weakly adsorbed mol-
ecules (Stehle et al. 2016).

The most significant processes that contribute to reduce 
PPP transfers are, in decreasing order of influence, sedimen-
tation, sorption, microbial degradation, photolysis, hydroly-
sis and vegetation removal (Malyan et al. 2021; Vymazal 



Environmental Science and Pollution Research 

and Bfezinova 2015). Vegetation plays a role within three 
different mechanisms (Wang et al. 2014): (1) direct uptake 
and accumulation of PPPs in plant tissues; (2) enzyme pro-
duction by the root system promoting biodegradation; and 
(3) the combined effect of vegetation and rhizosphere micro-
organisms, i.e., phytostimulation, that increases the activity 
of microorganisms by five to ten fold (Maillard and Imfeld 
2014). The hydraulic residence time, which is related to the 
hydrological response and depends on buffer zone sizing, 
also has an important role in the fate of PPP in the WBZ 
(Lyu et al. 2018; Tournebize et al. 2017): indeed, it takes 
about 1 month to significantly increase the dissipation of 
molecules (Stehle et al. 2011). Finally, the performance of 
wet buffer zones is also seasonally dependent.

The literature review for different types of WBZs revealed 
that ponds play a significant role in reducing the average 
concentrations and maximum peaks of PPP between their 
inlets and outlets (from 60 to 100%) (Brunhoferova et al. 
2021; Chen et al. 2019; Elsaesser et al. 2011; Liu et al. 
2019; Lizotte et al. 2014). However, retention or degrada-
tion processes can hardly be described due to the strong dilu-
tion effect when the pond contains a large volume (Le Cor 
et al. 2021). Mangroves (coastal ecosystems at the interface 
between the continent and the oceans) provide remediation 
conditions where PPP are uptaken by vegetation, accumu-
lated, detoxified, retained and degraded (Ivorra et al. 2021). 
In addition, the hydrological conditions in these systems 
favour these processes thanks to increased sedimentation 
and slowing runoff (Gaullier et al. 2018). Rice fields are 
efficient in PPP mass reduction, with values ranging from 26 
to 75%. Indeed, flooded conditions allow for the interception 
of irrigation water which is more or less loaded with PPPs 
(Matamoros et al. 2020).

Among the AWBZs, peri-urban ponds play a buffering 
role for PPP storage, inducing a non-negligible risk for bio-
diversity. The presence of vegetated strips (> 2 m) around 
these ponds would reduce the presence of PPPs (Ulrich et al. 
2018). Stormwater ponds, which are AWBZs for managing 
stormwaters (flood risk and water quality), also boast a high 
efficiency in mass reduction of PPPs (36 to 100%; Cryder 
et al. 2021). The maintenance and regular cleaning of these 
AWBZs result in the renewal of the sediment compartment 
where hydrophobic molecules can be stored. However, this 
also raises the question of the fate of these recovered sedi-
ments, which should be handled according to their type of 
contamination and to the associated risk. The factors that 
can be controlled in the design of AWBZs are sizing (ratio 
of buffer zone surface area to connected upstream hydrologi-
cal surface area), vegetation cover, organic matter content 
and substrates supporting microorganisms. Recommenda-
tions converge on a sizing greater than 1% of the connected 
upstream watershed (Tournebize et al. 2017). Therefore, to 
optimize the wetland buffer zone area and to maximize PPP/

substrate contact areas, it is recommended that the buffer 
zone be large. This contributes to reduce flow velocities, 
favour shallow areas (< 50 cm) and thus facilitate the estab-
lishment of aquatic vegetation as well as sorption and deg-
radation processes.

Other solutions for intercepting agricultural flows 
through landscaping (flooded riparian strips, bioreactors 
etc.; Tournebize et al. 2020) have been evaluated for nitrate 
ion retention although very little work has focused on their 
application to PPPs.

Part conclusion regarding the reduction of PPP 
transfers at the landscape scale 

To conclude, BZs can only be considered as a complement 
to a reduction program of PPP use. Interception of PPP 
strongly depends on the type of flow: surface vs subsurface 
and diffuse vs channelized. For each individual case, a spe-
cific BZ should be selected for its highest potential of PPP 
removal. It remains difficult to assess the overall efficacy of 
the levers for action at the landscape scale and to avoid con-
founding factors as well as limitations related to the concrete 
implementation of BZs at this scale. This is particularly the 
case when considering water transfer, the major risk being 
the presence of hydraulic by-passes and hydromorphic soils. 
Their localization at catchment basin scales should also be 
considered as an efficiency factor. Their main role is to store 
and promote degradation although remaining questions still 
need to be addressed concerning the persistence in the soil/
sediment compartment and the appearance and fate of trans-
formation products. Due to their limited potential in removal 
efficiency, BZ should not be used as a license to pollute.

Regarding atmospheric dispersion, physical barriers are 
part of the range of levers that can be mobilized to limit 
aerial transfers of PPPs, as presented earlier (reduced air on 
standard equipment, air assistance management, drift-limit-
ing nozzles, confined spraying, directed flow or face-to-face 
equipment, etc.). These levers could be combined in order to 
further improve drift reduction. For example, van de Zande 
et al. (2004) observed a 95–99% drift reduction when com-
bining an air-assisted sprayer with a hedge higher than the 
height of the treated field crop. However, as concluded by 
van de Zande et al. (2019), the filtering capacity of the hedge 
under these conditions requires further evaluation. Models 
could be used in this evaluation since it remains complex for 
all possible combinations to be tested (Bedos et al. 2020).

More generally, in addition to their ability to reduce PPP 
transfer in drift and runoff, hedgerows and forest areas pro-
vide a significant protection against erosion (Ucar and Hall 
2001), protection of crops and cattle against sun and wind 
and can improve microclimate conditions (Wenneker and 
van de Zande 2008). They also allow for the maintenance of 
a specific biodiversity (Ogburn et al. 2021; Tibi et al. 2022) 



 Environmental Science and Pollution Research

even though studies indicate that hedgerows can be sub-
ject to increased PPP contamination (Aubertot et al. 2005; 
Pelosi et al. 2021). This issue should be further investigated 
in order to better assess its impact on the ecosystems and 
biodiversity they support. Finally, both hedgerows and forest 
areas can generate a significant economic value to be associ-
ated with their environmental functions.

Modelling the fate of PPPs 
in the environment for risk prevention 
and management

Understanding the processes involved in the fate and transfer 
of PPPs in the environment is fundamental for the associated 
risks and their mitigation to be assessed. This assessment 
would require all the processes to be formalized and prior-
itized. However, given the multiplicity of PPPs, practices 
and agro-pedoclimatic contexts, it would be impossible for 
the fate and impacts of all PPPs to be evaluated in all types 
of environments through laboratory and field experiments 
only. Modelling is therefore a useful tool for assessing the 
risks associated with the use of PPPs and their prevention 
and management. Moreover, this tool is also required at the 
regulatory level for PPP approval and for placing on the 
market.

The models developed to simulate the fate of PPPs in the 
environment do not accurately reproduce the reality of trans-
fers because of the complexity of the processes to be taken 
into account. However, they do allow for various situations 
to be compared, including the use or not of a lever for action 
(provided that its description in the model is possible), the 
definition of potential exposure levels or the calculation of 
predicted environmental concentrations for risk assessment 
and management. They also contribute to the establishment 
and testing of agro-pedoclimatic scenarios with the aim of 
reducing PPP transfers and associated risks for various agri-
cultural practices and environmental conditions.

Modelling the fate of PPPs at the plot scale

Many numerical models describe the fate of PPPs in the 
environment at plot scales (Juan et al. 2018). These models 
simulate the transport of water, heat and PPPs in the soil, 
their transfers towards different environmental compart-
ments (groundwater, surface water, plants and air), and their 
degradation (abiotic and biotic) pathways as well as phys-
ico-chemical equilibria. However, all models do not always 
describe the same processes or function in the same manner. 
The most widely used models at the European level include 
four models that focus on assessing the risks of groundwa-
ter and surface water contamination related to the use of 

PPPs, in the context of their approval and placing on the 
market (FOCUS 2000; 2001): MACRO (water and solute 
transport in macroporous soils) (Larsbo and Jarvis 2003), 
PELMO (pesticide leaching model) (Klein 2000), PEARL 
(pesticide emission at regional and local scales) (Leistra 
et al. 2001), and PRZM (pesticide root zone model) (Suárez 
2005) (Table SI2). These models simulate the transport of 
water and PPPs in the soil as well as their transfer to ground-
water, surface water, plants and/or air. However, they differ 
according to the processes they integrate and in the manner 
they are represented: for example, only MACRO describes 
the transport of PPPs in the macroporosity of soils while 
only PRZM describes their transfer to surface water by ero-
sion and runoff.

The assessment of the risk of contamination of ground-
water by PPPs within the European regulatory framework 
relies on the estimation of their concentrations in water at 
1-m depth (FOCUS 2000). Most studies that have been con-
ducted to determine the performance of the four models in 
this regard are limited to the comparison between simulated 
and observed concentrations in the soil, and sometimes in 
water, after application of a PPP to a single crop during a 
cropping season. These studies pointed out the variability 
in performance of the models according to the PPP and to 
the context (climate, soil, crop). Nevertheless, in general, 
MACRO proved to be the best performing model (Gian-
nouli and Antonopoulos 2015; Labite et al. 2013; Leistra 
and Boesten 2010; Mamy et al. 2008; Marín-Benito et al. 
2014, 2020). The results published in the literature dem-
onstrate that the regulatory risk assessment of groundwater 
contamination could be improved by (1) taking into account 
preferential transfers (MACRO integrates this process, 
but it is rarely activated at the time of parameterization), 
particle-facilitated transport and agricultural practices; (2) 
using more complex models (2D and 3D models, saturated/
unsaturated zone models and statistical models); and (3) 
evolving towards a spatialized approach (landscape scale in 
particular).

The regulatory estimation of PPP concentrations in sur-
face waters follows a four-step approach (FOCUS 2001): the 
first two steps are based on a relatively simple tool (FOCUS 
STEPS1-2) and on conservative “worst-case” assumptions, 
the next two steps (Steps 3 and 4) are based on MACRO for 
PPP concentrations in subsurface drained waterflows, PRZM 
for PPP concentrations in runoff and SWASH (surface 
water scenarios help; van den Berg et al. 2015) for quanti-
ties of PPPs deposited in surface waters by drift. MACRO 
or PRZM coupled with the TOXSWA model (Adriaanse 
1996; 1997) simulate the resulting fate of PPPs in receiving 
ditches, ponds and rivers (Table SI2). The VFSMOD (veg-
etative filter strip modelling system) model (Lauvernet and 
Muñoz-Carpena 2018; Muñoz-Carpena et al. 2018, 1999) 
(Table SI2) is used for simulating the effect of grassed strips 
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on the fate of PPPs in runoff in Step 4, thus allowing for 
risk management measures to be taken into account. Many 
authors have observed that Step-3 and -4 approaches tend to 
underestimate PPP concentrations in surface waters (Knäbel 
and Schulz 2014; Knäbel et al. 2012, 2013a, 2013b). There-
fore, the assessment of PPP concentrations in surface waters 
and associated risks could be improved by (1) enhancing 
the mechanistic representation of runoff and erosion; (2) 
incorporating a broader temporal dimension and taking into 
account the dynamics of climatic events; and (3) using spa-
tialized models.

The models employed at regulatory levels to estimate the 
transfer of PPPs to the atmosphere can evaluate the volatili-
zation of PPPs according to relatively refined approaches 
(FOCUS 2008; Guiral et al. 2016): an empirical approach 
for volatilization from soil that is based on physicochemical 
characteristics of active substances using MACRO (which 
does not consider volatilization from the plant canopy); a 
simplified approach towards soil-atmosphere exchanges 
using PELMO and PRZM; a description according to a resis-
tive scheme where atmospheric conditions can be taken into 
account with PEARL. The PEARL model has been most 
extensively tested against a variety of volatilization datasets 
from soil and plants: the main limitations of this model lie in 
its capacity to describe leaf surface interaction processes, the 
effect of formulation on PPP behaviour and the distribution 
of products within the canopy during application (van den 
Berg et al. 2016a).

Meanwhile, the empirical EVA 2.0 model is applied 
to estimate the gaseous deposition of PPPs on an aquatic 
surface (FOCUS 2008) (Table SI2) even though the EFSA 
evaluation concluded that it does not provide realistic esti-
mates of worst case exposure (FOCUS 2008).

Modelling the ability of buffer zones to mitigate PPP 
transfer to surface water

At the plot scale and in the vicinity of the treated field, 
the simplest models that describe the transfer of PPPs in 
the environment and the capacity of BZ to mitigate PPP 
transfers to surface water are based on correlations between 
observed data and key BZ parameters (bandwidth, rough-
ness, vegetation density etc.). However, these simple equa-
tions are difficult to apply outside the local context where 
they were initially formulated (Yu et al. 2019). More com-
plex models have also been developed, some of which are 
used in the regulatory framework of PPPs at the European 
level (see above) such as TOXSWA (toxic substances in sur-
face waters) for ditches (Dollinger 2016) and VFSMOD for 
grassed strips (Muñoz-Carpena et al. 2018) (Table SI2). The 
latter was successfully tested, pointing to a good agreement 
between model predictions and measured efficiency of PPP 
scavenging by vegetation (Poletika et al. 2009). However, 

further studies are still required for the interactions between 
PPPs, soil and vegetation to be better described as they travel 
through BZs. Colloidal transport, preferential flow, retention 
and remobilization of PPPs over a long term also need to be 
better understood. Finally, models on the role of other BZs 
(hedgerows, wetland buffer zones and infiltration ditches) in 
limiting water transfer of PPPs still require specific develop-
ments, since none have yet been identified in the literature.

At watershed scales, simple approaches are based on GIS 
(geographic information systems) and on simple equations 
or expert-rated scores to determine the transfer and mitiga-
tion potential of PPPs (Dosskey et al. 2015). These meth-
ods can be applied at a first level to help identify risk areas 
within a territory. However, their performance has not been 
systematically evaluated, and they do not incorporate the 
temporal variability of the processes involved. There are also 
several mechanistic models at catchment scales (LEACHM-
runoff, MHYDAS, PESHMELBA, SACADEAU, SWAT, 
etc.) (Table SI2), but they do not all take into account the 
influence of BZs. The SWAT (soil and water assessment 
tool) (Arnold et al. 1993; Wang et al. 2019b), which simu-
lates the presence of BZs (grassed talwegs, vegetated filter 
strips, sedimentation basins etc.), is the most widely used 
model. However, the spatial heterogeneity of landscape 
elements (dimensions, soil type, nature and density of veg-
etation and slope), their geographical location and their 
hydrological connections with the treated plots cannot not 
always be explicitly represented. Furthermore, very few 
tools are available for evaluating the efficacy of different 
buffer infrastructure combinations (grassed or forest strips, 
hedges, ditches and constructed wetlands). Finally, it is still 
challenging to convert models that have been developed 
at watershed scales into operational tools. One key issue 
would be to consider horizontal water transfers together with 
atmospheric transfers at watershed scales, thus allowing for 
the contribution of both pathways to non-target area con-
tamination to be analysed. Such approaches are currently 
under development (Voltz et al. 2019).

Before using these models to prioritize scenarios of modi-
fications in agricultural practices and landscape organiza-
tion, it would be necessary to (1) improve the representation 
of the effects of cropping practices on PPP transfers. This 
particularly concerns agro-ecological practices which are 
often based on an increase in crop diversity within the field 
and at the landscape scales and are difficult to describe in 
current models; (2) acquire data for parameterization; (3) 
estimate the uncertainties associated with the results; and 
(4) develop know-how guidelines for implementing these 
models at the watershed scale.
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Modelling PPP emissions to the atmosphere

There are two broad categories of models of PPP emis-
sions to the atmosphere: the first describe the processes 
involved during PPP application (spray-drift) while the 
second describe the processes involved after application 
(volatilization).

According to the objectives of the models, spray drift 
modelling may take into account the different factors that 
govern spray-drift (type of material, meteorological condi-
tions, crop characteristics and landscape spatial configura-
tion including the presence of hedges) which in turn condi-
tions the type of mitigation measures that can be applied. 
In particular, the AgDRIFT model (Bird et  al. 1997) 
(Table SI2) simulates sedimentary spray drift and aerial 
drift for airplane or helicopter applications. Note that aerial 
spraying of PPPs has been banned in France since 2014 
(French Republic 2014), although derogations can be excep-
tionally granted. This model also simulates sedimentary drift 
for ground-based spraying. The Lagrangian model IDEFICS 
(IMAG program for computer simulated drift evaluation 
from field sprayers) (Holterman et al. 1997) calculates the 
spray drift from conventional boom sprayers for field crops 
that is deposited downwind from the treated plot. It can also 
compute the vertical distribution of drops that are still pre-
sent in the air (Table SI2). The Silsoe spray drift model (But-
ler Ellis and Miller 2010) is also based on the Lagrangian 
approach. Bozon and Mohammadi (2009) applied the Driftx 
model to estimate the horizontal dispersion of PPP fluxes as 
a function of wind conditions and topography (Table SI2). 
Computational fluid dynamic models (CFD) have also been 
recently applied to predict spray drift (Hong et al. 2018) and 
have been applied to spray drift in orchards. Regarding spray 
drift in vineyards, Chahine et al. (2014) analysed the effects 
of the structure of a vineyard or of the type of nozzle used. 
This was carried out with a model based on wind field fine 
modelling within the plot as well as dispersion modelling 
at landscape scales thanks to large eddy simulation models 
(ARPS model) coupled to a Lagrangian model of droplet 
trajectory. Recently, a model also has been developed for 
comparing the efficiencies between application techniques 
for limiting spray-drift in vineyards (Djouhri et al. 2023). 
Furthermore, ongoing studies focus on the assessment of 
hedge efficiency to limit droplet atmospheric dispersion 
downwind from treated fields. Models have also been devel-
oped to assess the air concentrations and ground depositions 
of dust emitted from seed treatments (Devarrewaere et al. 
2018) as well as PPP emissions following drone applications 
(Wang et al. 2019a). Empirical relationships are equally used 
for the estimation of sedimentary spray drift (Rautmann and 
Streloke 2001; Torrent et al. 2020), although their valid-
ity remains limited to the conditions in which they were 
developed, while they have most often been adapted to 

short distances (< 30 m). Finally, as mentioned in the previ-
ous paragraph, a landscape scale model is currently being 
developed, coupling hydrological and atmospheric trans-
fers, according to a Lagrangian approach for atmospheric 
droplet dispersion (Voltz et al. 2019). In order to improve 
the assessment of PPP emission to the atmosphere during 
application, it is necessary to (1) improve knowledge on the 
characteristics of emitted drops (size, velocity and angle of 
ejection); (2) improve the description of the interception of 
the droplets by foliage and the relationship with drift; (3) 
study the relationship between sedimentary spray drift and 
aerial spray drift; and (4) take into account the conditions of 
atmospheric stability in a more systematic manner.

For post-application, the objective is to predict volatiliza-
tion from a treated plot by describing emissions from the soil 
and from the crop canopy. In addition to empirical equations 
based on correlations between measured fluxes and phys-
icochemical properties of compounds (Guiral et al. 2016), 
various plot-scale models are available (e.g. PEM (Scholtz 
et al. 2002); Volt’Air-Pesticides (Garcia et al. 2014) and 
SURFATM-Pesticides (Lichiheb et al. 2016)) (Table SI2). 
These models can describe observations at an acceptable 
level and can quantify the efficiency of the incorporation of 
a PPP within the top soil when volatilization flux is reduced 
(Guiral et al. 2016). However, they still present a few limi-
tations in the description of (1) the PPP adsorption from 
the gas phase to the soil solid matrix under dry conditions; 
(2) the volatilization from the crop canopy and interactions 
of the compound with leaves (penetration, adsorption, pho-
todegradation and rain leaching), especially relative to the 
effect of the formulation; (3) the initial estimation of spray 
interception by the crop; and (4) certain current agricultural 
practices (e.g. interactions with mulch and crop diversity 
within the field).

It is equally significant for the dispersion of the gas phase 
downstream of the treated plot to be taken into account, 
since it can generate exposure to PPPs via surface deposi-
tion. Thus, an empirical model was proposed by FOCUS 
(2008) to estimate gas deposition on an aquatic surface 
(EVA 2.0 model; Fent 2004) (Table  SI2). Mechanistic 
models describing atmospheric dispersion and dry deposi-
tion processes have been coupled to emission models, such 
as Volt’Air-Pesticides with FIDES (Bedos et al. 2013) or 
PEARL (van den Berg et al. 2016a) with OPS (Baart and 
Diederen 1991). However, due to lack of data, the estima-
tion of PPP deposition is currently restrained by bottlenecks 
such as (1) the characterization of PPP exchange between 
the atmosphere and surfaces (soil, vegetation and surface 
water) and (2) the testing of model performances. Despite 
the observation of medium- and long-range atmospheric PPP 
transport for the most persistent compounds, the applica-
tion of transport models for simulating PPP concentrations 
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in the atmosphere is still rare (Couvidat et al. 2021; Voltz 
et al. 2019).

Modelling the fate of PPPs used in non‑agricultural 
areas

The transfer of PPPs from non-agricultural areas towards 
surface and groundwater has been simulated by models 
developed for waterproof surfaces, grass areas (golf courses 
and lawns) and railroads.

 The semi-mechanistic model of Luo et al. (2013) esti-
mates the PPP concentrations transferred to surface water 
by leaching from waterproof surfaces of urban areas. It has 
been able to assess pyrethroid concentrations in an accept-
able manner.

One of the most widely used models is the HardSPEC 
(model for estimating surface and ground water exposure 
resulting from herbicides applied to hard surfaces) model 
(Hollis et al. 2017) developed in the UK as part of the regu-
latory risk assessment of PPPs (Table SI2). Thanks to this 
model, PPP concentrations in surface water and sediments 
can be determined after their application to waterproof sur-
faces (asphalt, cement, etc.) and in groundwater in the case 
of application to railroads (ballast) (Ramwell 2014). At pre-
sent, the performance of this model relative to observed data 
is not known to have been tested.

TurfPQ was designed to simulate PPP concentrations 
in runoff from grassed areas such as golf courses or lawns 
(Haith 2001) (Table SI2). Published results indicate that this 
model tends to overestimate PPP concentrations (especially 
for highly adsorbed PPPs), particularly because it does not 
take into account volatilization or the evolution of adsorp-
tion as a function of time. However it tends to underestimate 
concentrations in the case of intense precipitation events 
(Kramer et al. 2009). TurfPQ has therefore been used as 
the basis for TPQPond in order to simulate the accumula-
tion of PPPs in ponds after transfer by runoff (Haith 2010) 
(Table SI2). TPQPond has not been directly tested, although 
Haith (2010) demonstrated that the orders of magnitude of 
simulated concentrations were correct.

It should be noted that models dedicated to agricultural 
contexts are also used for evaluating the transfer of PPPs 
applied to the grassed surfaces of non-agricultural areas 
(Kramer et al. 2009).

Part conclusion regarding modelling the fate 
of PPPs in the environment for risk prevention 
and management

A wide diversity of models has been developed to simulate 
the fate of PPPs in soil, water and/or air, at plot or landscape 
scales and to prevent and manage the risks associated to 
these PPPs. Each model has its own particularity, with its 

strengths and weaknesses. However, overall, existing models 
cannot describe all the processes involved in the fate and 
transfer of PPPs nor can they take into account the great 
diversity in existing agricultural practices. Besides, no model 
yet considers the combinations between the various levers 
for action (materials, soil cover, grassed strips, ponds, etc.). 
The land-to-sea continuum has not been integrated by any 
model either. The choice in applying one or several models 
depends on the context (agricultural systems and practices, 
scale, dominant processes etc.) and on the pursued objective 
(understanding of processes, risk assessment and manage-
ment and regulation). For example, at the regulatory level, 
given the different concepts of modelling water flows in the 
recommended models and the critical importance of model 
results for risk assessments, EFSA (2004) concluded that 
no models should be applied alone and recommended that 
risk assessments should be based on two models. Further-
more, when addressing the watershed scale, greater attention 
should be given to parameterization methodologies and to 
the estimation of uncertainties in the results. Finally, it is 
crucial to emphasize that the development and testing of 
model performances still require additional observational 
data from laboratory or field experiments in real conditions.

Conclusion

The objectives of this review were to identify the various 
levers for action for preventing and managing the transfer 
of PPPs in the environment from application to landscape 
scales. All levers produce effects on the reduction of PPP 
transfers, but these effects are variable and more or less lim-
ited depending on the soil and climatic conditions, on the 
vegetative development of the crop, on buffer zone charac-
teristics and location and on the properties of the substances 
applied. Consequently, taken independently, none of these 
levers guarantee a zero risk of PPP transfer. Levers used in 
a combined manner could limit the transfers (agricultural 
practices, landscape organization and remediation), but 
the efficacy of the combination of several levers for action 
remains to be characterized, since antagonisms or incompat-
ibilities between levers may appear a posteriori.

For many years, the use of PPP has been evolving: ben-
efit/risk analyses have led users to reduce the quantities 
applied in order to limit the risk of PPP transfers, in a global 
context of agro-ecological transition. The property profiles 
of PPPs have changed over the past 20 years with the ban-
ning of certain persistent and/or toxic PPPs, but the number 
of available substances has also been reduced, thus reinforc-
ing and concentrating the application of some molecules. As 
a result, their presence and transfer to the environment have 
increased. It should also be underlined that some persistent 
PPPs are still in use and even approved, such as most of 
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the SDHI (succinate dehydrogenase inhibitor) molecules. 
No data is known to be available regarding the transfer of 
biopesticides in the environment. Consequently, there is no 
existing data regarding the effect of the various reviewed 
levers for action on the transfer of these biopesticides.

In conclusion, in order to better characterize the effects 
the different existing levers for action may produce on PPP 
transfer, it remains crucial to (1) further investigate and 
evaluate the effect of the formulation on the behaviour of 
PPPs and on their transfer in the environment; (2) provide 
better information on the use of PPPs in space and time; (3) 
strengthen current knowledge on the behaviour of transfor-
mation products in the different compartments; (4) evaluate 
the risk of accumulation of PPP and their transformation 
products in refuge areas (hedgerows, forests, etc.); (5) study 
the fate of biopesticides as well as transformation products 
of all PPPs in the plots and in buffer zones; (6) evaluate 
the efficacy of combining levers for action; (7) study the 
effect of climate change on the behaviour of PPPs, including 
changes in uses induced by modifications of pest attacks, 
modifications of crop cycles and relocation of crops; and (8) 
develop more integrated approaches addressing both qualita-
tive and quantitative aspects, from local to watershed scales, 
due to the multiple effects of management strategies at the 
plot level and of landscape elements on PPP transfers.
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