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Abstract

Context Manipulating crop diversity in the land-
scape has been suggested as a promising management
option to enhance biocontrol but how crop diversity
independently of other important aspects of landscape
structure affects predator and pest abundances remain
largely unexplored.

Objectives  Our study assessed the relative and inter-
active effects of crop composition and configuration
on aphids and their generalist predators, i.e. lady-
birds, spiders and lacewings.

Methods We sampled arthropods in 47 cotton fields
and 21 wheat fields in Hebei, China, located along
three landscape gradients: crop diversity (Shannon
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diversity of crops ranging from 0.27 to 1.32 corre-
sponding to a crop richness varying from 2 to 7 dif-
ferent crops), crop configurational (crop edge density
varying from 0.0012 m/ha to 0.066 m/ha) and propor-
tion of semi-natural habitats (varying from 0.5% to
56%).

Results Crop diversity never had any effect on
arthropod communities and we found no effect of the
proportion of semi-natural habitats on natural ene-
mies’ abundances. Aphid abundance was positively
correlated with the proportion of semi-natural habi-
tats both in cotton and wheat fields. Lacewing abun-
dance benefited from configurational heterogeneity as
abundances increased with crop edge density.
Conclusions Our result provide evidence that crop
diversity is probably not the best management option
to enhance biocontrol of aphids in Chinese landscapes
and confirms that the amount of semi-natural habitats
in the landscape is a critical aspect shaping arthropod
communities. It also indicates that manipulating crop
edge density by promoting agricultural landscapes
with small field size for instance can benefit natural
enemies of crop pests.

Keywords Landscape diversity - Landscape

composition - Landscape configuration - Generalist
predator - Aphids
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Introduction

Agricultural productivity gains have been achieved at
the expense of biodiversity, which is now seriously
threatened (Dudley and Alexander 2017; Raven and
Wagner 2021). Ecological intensification of agri-
cultural systems, which consists in increasing the
services delivered by biodiversity, offers a promis-
ing way to reduce environmental impacts of modern
agriculture (Wratten et al. 2012; Bommarco et al.
2013). Among the key ecological processes embed-
ded within ecological intensification, biological pest
control, that consists in controlling pest populations
by their natural enemies, is an important ecosystem
service that can help in reducing crop damages and
pesticide use (and multiple associated side effects e.g.
see Desneux et al. 2007).

Evidences indicates that landscape simplifica-
tion characterized by loss of semi-natural habitats,
decrease in crop diversity or enlargement of field
sizes have made crop fields more susceptible to pest
outbreaks (Gagic et al. 2021). Pest populations ben-
efit from landscape simplification as it directly lim-
its the level of top-down control by natural enemies
while increasing the level of food resources for the
phytophagous species (Rand et al. 2014; Rusch et al.
2016). However, the optimal strategy for diversify-
ing agricultural landscapes in order to maximize pest
suppression remains poorly investigated and we lack
clear guidelines on how to combine crop diversifica-
tion with amount and spatial arrangement of semi-
natural habitats to maximize natural pest control.

The key role of semi-natural habitats, such as grass-
lands, forests and hedgerows, on natural enemy abun-
dances and biological pest control has long now been
established (Bianchi et al. 2006; Veres et al. 2013;
Rusch et al. 2016). These habitats are considered as
sources of natural enemies in the landscape as they pro-
vide resources such as nectar, pollen as well as alter-
native preys or hosts and overwintering sites to natural
enemies that are scarcer in crops (Bianchi et al. 2006;
Veres et al. 2013). Crops can also offer key resource for
natural enemies such as food and prey enabling popula-
tions to build up (Rand et al. 2006; Blitzer et al. 2012).
Spillover of natural enemies through the crop-non-crop
interface is mainly driven by spatio-temporal shifts in
resource availability across the landscape (Rand et al.
2006; Schellhorn et al. 2015; Tscharntke et al. 2016;
Thomine et al. 2020a, b). This suggests potential
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synergistic effects between maintaining semi-natural
habitats and diversifying crop over space and time
effect on biological control of pests in agricultural land-
scapes (Perovic et al. 2018). In addition to top-down
processes shaping pest populations, landscape simpli-
fication may directly affect pest populations through
bottom-up effects mediated by higher availability of
crop resources or lower physical barrier to dispersion
(Rusch et al. 2010; Han et al. 2022). However, the con-
sequences of landscape-scale diversification through
crop diversification in interaction with non-crop habitat
management on natural enemy and pest communities
remains poorly investigated (Thomine et al. 2021); but
see Aguilera et al. 2020).

In this study we aim at assessing the relative and
interactive effects of crop diversity, the proportion of
semi-natural habitats and crop edge density on gener-
alist predators and aphid abundances. First, we (H1)
hypothesized that increasing crop diversity would
enhance top-down control of pests through beneficial
effects on natural enemies and increase bottom-up con-
trol resulting from resource dilution for pests. In addi-
tion, we also hypothesized (H2) an interactive effect
between the amount of semi-natural habitats and crop
diversity on natural enemies and pest abundance. We
expected a lower effect size of crop diversity on natu-
ral enemies and pests in landscapes with higher amount
of semi-natural habitats. This hypothesis relies on
synergistic effects of having both semi-natural habi-
tats and crop diversity if we assume that semi-natural
habitats are sources of natural enemies able to colonize
crop fields early in the season and that crop diversity
promotes high resource availability for arthropods.
Finally, we also hypothesized (H3) that crop configu-
rational heterogeneity at the landscape scale would
have a positive impact on predators with high dispersal
capacity, this high dispersal capacity and high spillo-
ver capacity allowing to explore a complex environ-
ment with lower mean crop patch area or higher crop
edge density. Increasing crop patch area would on the
contrary increase aphid abundance due to resource
concentration.
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Materials and methods
Field sites

The field sites were located in the Heibei and
Tianjin Province of China characterized by typi-
cal small-scale (in average 3 ha) multi-cropping
fields (Pan et al. 2019). The study sites covered
more than 600 km? in the main cotton produc-
ing regions of northern China (116°29'-117°37'E,
38°46'-39°36'N). Sites sampled the same year
were separated by at least 4 km to avoid redundant
effects between sites (Liu et al. 2018). The study
design consisted of 47 cotton fields and 21 wheat
fields (Fig. 1). The cotton fields were sampled dur-
ing 4 years between 2013 and 2016 with 19 sites in
2013, 12 sites in 2014, 9 sites in 2015 and 7 sites in
2016. The wheat fields were sampled during 2 years
between 2015 and 2016, with 14 fields in 2015 and
7 in 2016. Due to crop rotations, the sampled fields
were different each year and the number of sampled
sites differed because the farmers engaged in the
experiment didn’t do exactly the same number of
targeted crop fields every year.
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Fig. 1 Location of the sampling sites in China

Arthropods community assessment

In cotton crops, the sampling was done during the
flower and boll stage from early to mid-August in
2013, late-July to early-August in 2014 and 2016 and
mid to late-July in 2015, 3 times at 1 week interval. In
wheat fields, the sampling was done during the flow-
ering stage, from early to mid-August in 2013, from
late July to early August in 2014, from mid to late July
in 2015 and from late July to early August in 2016,
1 time each year (Liu et al. 2018). Because of these
different plant phenology, the number of sampling
rounds within a year differs between the two crops.
In each sampled field, three quadrats of 300 m? (30 m
x 10 m) were chosen in the center of the field to sam-
ple arthropods. The quadrats were at least 10 m from
field edges in order to avoid border effects. In each
quadrat, 50 plants randomly selected according to a
Z sampling pattern were carefully inspected. Only the
known dominant natural enemies and pests in each
crop were recorded (Ali et al. 2018; Hulle et al. 2020;
Yang et al. 2020). Therefore, on wheat crop, only
ladybeetles and aphids were recorded whereas in cot-
ton fields, lacewings, spiders, ladybeetles and aphids
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were recorded (Liu et al. 2018). Both natural enemies
(i.e. ladybirds, lacewings and spiders in cotton and
ladybirds in wheat) and aphids were counted visually
and identified to the family level.

Landscape analysis

Land-use types surrounding each study site were
characterized at four different radii: 500 m, 1000 m,
1500 m and 2000 m. After analysing all the spatial
extent, we only present here results from models with
landscape variables calculated at the 500 m radii as
models using explanatory variables at this spatial
extent explained the largest proportion of variance in
the response variables (Fig. S1). In our study, arable
lands occupy around 80% of the landscapes. We con-
sidered a total of 18 different land-use types taking
into account 15 cultivated crops (cotton, maize, pea-
nut, soybean, rice, sweet potato, wheat, vegetables,
fruit trees, pea, Chinese yam, oilseed rape, water-
melon, sunflower, alfalfa), artificial land covers, semi-
natural habitats (fallows, forests, greenbelts, shrub
and grass pooled together) and water. The mapping
was done with the QGis Desktop 3.4.1 software. For
more details about the map construction, see Liu
et al. (2018).

Three landscape variables were calculated at each
radius to assess crop diversity, the proportion of semi-
natural habitats as well as crop edge density. Crop
diversity was calculated using the Shannon index
applied to the several crop types. Crop edge density
(ED) was calculated as the ratio between edge crop
edge length and the total crop area (ED=edge length
of a given crop species (m)/total crops area (ha))
(Martin et al. 2019). Crop edge density therefore
reflects crop patchiness, and to which extent the land-
scape is divided into small patches of crops. All met-
rics were calculated with the Lecos Plugin on QGis
(Jung 2016). All correlation matrixes are given in Fig.
S2 for cotton and Fig. S3 for wheat and showed Pear-
son correlation value lower than 0.5.

Statistical analyses

The effects of crop diversity, crop edge density and
the proportion of semi-natural habitats on abun-
dance of natural enemies and aphids were exam-
ined using generalized linear mixed models [pack-
age lme4 (Bates et al. 2015)] with appropriate error
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distribution. Poisson, Negative Binomial or Gaussian
error distribution was used for the number of arthro-
pods, depending on the residual’s distribution. All
two-way interactions were considered in full models.
We fitted separate models for cotton and wheat sites
because the sampling design did not allow us to con-
duct all analyses in the same model (different time
period and sites for each model). Sites was introduced
in all models as a random effect to take into account
repetitive samples in the same sites over time. In
addition, the year effect was included in the models as
a random factor (crossed with the site effect) for mod-
els explaining arthropod abundance in cotton. For
models explaining abundance of arthropods sampled
in wheat fields the year effect was not considered as
a crossed random effect due to the too low number of
levels within the year effect (ie, only 2 years) but we
analyzed a potential bias of year on the residuals of
this model and no problem was detected.

We then applied a multimodel inference approach
to estimate the effects of our explanatory variables
as well as all potential two-way interactions between
them. Model averaging based on models with the
lowest AICc (AAICc<?2) were kept for inference.
Only results from the full averaging were kept for
the interpretation of the results. All analyses were
done using R 3.5.1. Multicollinearity between vari-
ables was investigated for each model with the vari-
ance inflation factor (VIF) and all the VIF were lower
than 2. software (R Core team 2018). Residuals were
inspected using the DHARMa package (Hartig 2018)
and no issues were detected. The potential spatial
autocorrelation in the residuals of the different mod-
els was examined using bubble plots and variograms.
Multimodel inferences were done using the MuMIn
package (Barton 2018) and the ggplot2 (Wikham
2016) and sjPlot (Liidecke 2018) packages were used
for data visualization.

Results
Cotton

The set of best models fitted to explain aphid abun-
dance in cotton included the proportion of semi-
natural habitats, crop edge density as well as crop
diversity. The proportion of semi-natural habitats
was the most important variable and had a significant
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positive effect on aphid abundance (Fig. 2, Table 1;
estimate=0.43, P=0.01). All other variables had no
significant effect on aphid abundance. None of the
two-way interactions were retained in the set of best-
fitting models. No significant effect of any landscape
variables was detected by models explaining ladybird
or spider abundances (Table 1). Lacewing abundance
were found to be positively affected by crop edge den-
sity in the landscape (Fig. 3, Lines represent model
predictions and grey area the 95% confidence inter-
vals obtained by model averaging among the set of
best-fitting models (Delta AICc <?2). 3; Table 1; esti-
mate=0.83, P=0.007). Model with crop edge den-
sity was the only model selected in the set of best-
fitting models (AICc < 2) (Table 1).

Wheat

The set of best models fitted to explain aphids abun-
dance in wheat fields included the proportion of
semi-natural habitats, crop edge density, crop diver-
sity, the interactions between crop edge density and
crop diversity, as well as the interactions between
crop edge density with the proportion of semi-natural
habitats. Among these variables, the proportion of
semi-natural habitats was the most important vari-
able with a significant positive effect on aphid abun-
dance (Fig. 4, Table 1; estimate: 1.21, P=0.002). All
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Fig. 2 Illustration of the effect of the proportion of semi-nat-
ural habitats in a 500 m radius on aphid abundance in cotton
fields. Lines represent model predictions and grey area the 95%
confidence intervals obtained by model averaging among the
set of best-fitting models (Delta AICc < 2)

the other variables or their interactions selected in the
set of best-fitting models had no significant effects on
aphid abundance and had a lower relative importance
(Table 1). We found no significant effect of any of
the landscape variables nor their interactions selected
in the set of best-fitting models to explain ladybirds
abundance in wheat fields (Table 1).

Discussion

The objective of our study was to assess the effect of
landscape-scale diversification through crop and non-
crop habitats on aphids and their natural enemies in
agricultural landscapes. Contrary to our expectations,
we did not find strong effects of crop diversity (alone
or in interaction with the amount of semi-natural hab-
itats) on abundance of aphids or natural enemies. Our
results revealed a consistent positive effect of semi-
natural habitats on aphid populations both in wheat
and cotton while no effect was detected on natural
enemies. However, crop edge density did not affect
aphids but enhanced lacewing abundance suggesting
that landscapes with low field-size are beneficial for
such natural enemies.

We hypothesized that increasing crop composi-
tional heterogeneity through crop diversity would
increase the abundance of natural enemies by pro-
viding diversified food sources and consequently
decrease the abundance of aphids through top-down
control and bottom-up control resulting from the
resource dilution for the pests (Rusch et al. 2010).
Moreover, we expected an interactive effect between
the amount of semi-natural habitats in the landscape
and crop diversity on natural enemies due to com-
plementation between habitats providing different
resources across time. Our results do not confirm
these hypotheses as we found that overall abundance
of natural enemies did not benefit from higher crop
diversity in the landscape (Shannon diversity of crops
ranging from 0.27 to 1.32 which corresponds to a
crop richness varying from 2 to 7 different crops)
and that aphid populations responded positively to
the amount of semi-natural habitats in the landscape.
Such results indicate that there are no additive or syn-
ergistic effects between the amount of semi-natural
habitats and crop diversity on aphid populations and
their natural enemies.
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Table 1 Statistical results of the multimodel inference applied to explain abundances of aphid, ladybird, lacewing and spider in cot-

ton and wheat fields

Crop  Response variable Explanatory variables

Variable
impor-
tance

Estimate Std.error z-value Pr(>lzl)

Cotton Aphid abundance
Crop edge density
Crop diversity

Ladybird abundance Proportion of semi-natural habitats

Crop edge density
Lacewing abundance Crop edge density
Spider abundance

Proportion of semi-natural habitats

Proportion of semi-natural habitats

043 0.186 2.34 0.01 * 1

-0.03 0.11 0.27 0.78 0.23
0.02 0.1 0.24 0.8 0.22
0.14  0.27 0.53 0.59 0.36

-0.03 0.15 0.21 0.83 0.18
0.83 031 2.67 0.007 RE

-0.02 0.13 0.21 0.83 0.21

Crop edge density 0.04 0.15 0.3 0.75 0.24
Wheat Aphid abundance Proportion of semi-natural habitats 1.21  0.39 2.99 0.002 RE ]
Crop edge density 0.15 031 0.47 0.63 0.77
Crop diversity 024 0.38 0.61 0.53 0.77
Crop edge density: crop diversity 1.64 1.08 1.5 0.13 0.77
Crop edge density: proportion of semi- 0.22  0.50 0.44 0.65 0.28
natural habitats
Ladybird abundance Proportion of semi-natural habitats 0.69 1.09 0.62 0.53 0.84
Crop edge density -0.02 1.19 0.02 0.98 1
Crop diversity 1.69 1.32 1.24 0.21 1
Crop edge density: crop diversity 271 2.19 1.21 0.22 1
Crop edge density: proportion of semi- 0.02 220 0.01 0.99 0.63
natural habitats
Crop diversity: proportion of semi-natural 021 225 0.09 0.92 0.63

habitats

Model avergaing was applied on the full models considering the prorpotion of semi-natural habitats, crop edge density, and crop
shannon diversity as well as all the two-way interactions as explanatory variables. Only the results of the “full” average were taken
into consideration after performing the model averaging. Variable Importance correponds to the sum of model weights over all mod-

els including each explanatory variable

TR

corresponds to cases where only one best model was selected by the mutlimodel selection procedure

Factors marked with an asterisk have a significant effect on the variables to explain at *P < 0.05; **P < 0.01; ***P < 0.001

Contrary to our hypotheses, we found no effect
of the proportion of semi-natural habitats on abun-
dances of natural enemies and a significant positive
effect on aphid abundance in cotton and wheat fields.
The strong context-dependency and inconsistency in
the effects of semi-natural habitats has been reported
before (Holland et al. 2016; Karp et al. 2018) and
can be due to the life-history traits of pests and their
natural enemies (Martin et al. 2016, 2019), the type
of semi-natural habitats considered and their qual-
ity in this rather vague classification (Badenhausser
et al. 2020) or agricultural practices in the local fields
or in the studied region that might have counteracted
the potential beneficial effects of semi-natural habi-
tats (Tscharntke et al. 2016; Etienne et al. 2022).
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The fact that semi-natural habitats may indeed be a
greater source of pests than natural enemies appears
credible given that the region studied in this paper,
the Hebei Province, is a region with an intensive use
of pesticides (Li et al. 2014). Additionally, many of
the habitats characterized as semi-natural habitats in
our study are quite low in plant diversity (forests of
poplar mostly, personal obs.) and may be of low qual-
ity for natural enemies while acting as overwintering
sites or sources of alternative food for pests (Delbac
et al. 2020; Cornara et al. 2021). Future researches
should now focus on fully understanding when and
why semi-natural habitats can be a source of pest
more than a source of natural enemies.
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Fig. 3 Illustration of the effect of crop edge density in a 500 m
radius on lacewing abundance in cotton fields. Lines represent
model predictions and grey area the 95% confidence intervals
obtained from the best-fitting model (only one model with
Delta AICc<2)
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Fig. 4 Illustration of the effect of the proportion of semi-nat-
ural habitats in a 500 m radius on aphid abundance in wheat
fields. Lines represent model predictions and grey area the 95%
confidence intervals obtained by model averaging among the
set of best-fitting models (Delta AICc < 2)

Contrary to our hypotheses, crop diversity had
no impact on pest, nor on natural enemies. To date,
only a few studies have addressed the question of
landscape crop diversity impact on natural enemies
and pests. While beneficial effect of crop diversity on
pest control has been reported (Liu et al. 2016, 2018;
Redlich et al. 2018; Kheirodin et al. 2020; Zhao et al.
2021) very few studies have quantified the relative

and interactive effect of crop diversity in addition to
the proportion of semi-natural habitats or crop con-
figurational aspects (eg, crop edge density). Here
again, farming practices and intensive use of pesticide
in particular may have hinder our ability to detect any
positive effect of crop diversity on natural enemies’
population. In addition, we used a rather low range of
variation in crop diversity (from 2 to 7 crop types per
landscapes) and we used a taxonomic classification of
crop types and not a functional one (ie, considering
crop traits for instance). For instance, wheat and bar-
ley were counted as two different crops while these
two species are very similar. Future studies should
therefore use a functional classification of crop type
in order to further investigate crop diversity effects on
natural enemies (Fahrig et al. 2011).

In line with our hypothesis, we found that increas-
ing crop configurational heterogeneity, i.e. crop edge
density, enhanced lacewing abundance, an impor-
tant functional groups for aphid biological control.
This result suggests that increasing configurational
heterogeneity through higher crop edge density (i.e.,
landscapes supporting more small patches of crops)
benefit spillover across edges. This result also partly
confirms our initial hypothesis about higher comple-
mentarity between food resources and higher spillo-
ver in landscapes with higher crop edge density. This
result is in line with recent studies on natural enemies
and pollinators finding a positive effect of landscape
configuration mediated by mean crop patch area
(Hass et al. 2018; Martin et al. 2019). However, our
study also highlights that not all taxonomic group of
natural enemies respond to crop configurational het-
erogeneity and strongly suggests that examining how
life-history and species traits might provide explana-
tions about these different responses of natural ene-
mies to landscape context (Martin et al. 2019).

Conclusions

Our study investigated the effect of landscape-scale
diversification through crop and non-crop habitats
on aphids and their natural enemies in agricultural
landscapes. Our study does not provide any evidence
about a positive effect of crop diversification in the
landscape on biological pest control while the propor-
tion of semi-natural habitats benefitted aphid abun-
dance in cotton and wheat fields. Interestingly, our
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study suggests that promoting agricultural landscapes
with small field patches is beneficial for some natu-
ral enemies and not for pests. Future research should
now examine more precisely the effect of the quality
of semi-natural habitats and the major role of farming
practices (eg, pesticide use) in the landscape to fully
understand the inconsistent effects of semi-natural
habitats on pests. In addition, expanding the analysis
of crop diversity effects on biological pest control to
other context and along larger range of crop diversity
should help to draw robust conclusions about this
management option in agricultural landscapes.
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