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• Differences in pesticide use changes at 
161 French vineyards over a 10-year 
period were studied 

• Indicators linked to the pesticide use 
trajectory were calculated, including the 
initial point, pathway taken and final 
point 

• Three clusters were identified 
• The three types differed in terms of 

technical changes implemented during 
the pesticide reduction transition  
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A B S T R A C T   

CONTEXT: Winegrowers apply large quantities of pesticides to their vineyards to reduce high cryptogamic 
pressure. But these practices must change to lower pesticide use and improve viticulture sustainability. Different 
options for curbing pesticide use exist, and they can be progressively implemented following a specific temporal 
scheme in each production system. Some change trajectories can be more efficient than others in limiting 
pesticide applications. Combining trajectory studies and typology may be helpful in characterizing how farmers 
change their practices and in summarizing the various production system trajectories possible when transitioning 
towards pesticide use reduction. 
OBJECTIVE: The aims of this study were i) to identify different types of pesticide use trajectories, and ii) to 
understand the options implemented by winegrowers to reduce their pesticide use. 
METHODS: We analysed data from 161 farming systems in the DEPHY farm network in 12 French winegrowing 
regions over a 10-year period. Pesticide use was assessed with the treatment frequency index (TFI). We char
acterized the TFI trajectory of each farming system with six indicators and built a typology of TFI trajectories. We 
then analysed several indicators such as the use of biocontrol products and the dose sprayed to identify some of 
the management options chosen to achieve these pesticide use trajectories. 
RESULTS AND CONCLUSIONS: Three clusters were identified and characterized in terms of pesticide use strat
egy. The first cluster represented farms with an initial point close to the regional average and which did not 
experience a significant TFI reduction (− 13%). The second cluster comprised farms with a low TFI when entering 
the network that were able to further reduce their TFI over time (− 48%). The last cluster represented farms with 
a high initial TFI and a high reduction (− 63%). All clusters managed to reduce their pesticide use by combining 
several technical levers at different intensities. Some differences in the levers between clusters were observed. 
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Cluster 2 farms are in the process of converting to organic farming and using the associated levers such as 
biocontrol and mechanical weeding. 
SIGNIFICANCE: The changes implemented by cluster indicate a varying degree of progress in the transition to
wards pesticide use reduction. The initial point was identified as having a strong influence on the end result. The 
more intensively the technical levers were combined, the more difficult it was to reduce pesticide use. The 
DEPHY network supported winegrowers in their reduction of pesticides who managed to reduce their pesticide 
use by 13% to 63%.   

1. Introduction 

The dominant agricultural model is being challenged by the rise of 
societal debates on the environmental and health consequences of cur
rent intensive agricultural practices (Aubertot et al., 2005; Matson et al., 
1997; Pretty et al., 2018; Wilson and Tisdell, 2001). To support and 
stimulate the transition towards low pesticide inputs, some countries 
have created public policies. In 2008 the French government launched 
its national ECOPHYTO plan with the aim of cutting pesticide use in half 
and ending the use of glyphosate by 2025 (Barzman and Dachbrodt- 
Saaydeh, 2011). Within the ECOPHYTO plan, a network of French 
demonstration farms, the DEPHY farm network, was created to promote 
and assess practices implemented to reduce pesticide use. 

In 2008, the French government started up the ECOPHYTO national 
plan with the aim of a 50% decrease of the pesticide use and ending the 
use of glyphosate by 2018 (Barzman and Dachbrodt-Saaydeh, 2011). In 
2015, the ECOPHYTO II plan was launched with new goals, the aim of 
supporting famers in the transition and find solutions to reduce pesticide 
use while maintaining a high productivity. Within the ECOPHYTO plan, 
a network of French demonstration farms, DEPHY-Farm network, was 
created to assess the implementation of practices to reduce the pesticide 
use. Technical changes can be complex and challenging for winegrowers 
particularly (Merot et al., 2019). The DEPHY-farm network is an inter
esting device to understand and characterize the way farmers perform 
the transition towards low pesticide use systems. 

Lamine and Bellon (2009) have identified two different transition 
processes used by farms shifting to organic farming: i) an abrupt, direct 
and reversible transition or ii) a transition implemented through a 
progressive and continuous process of adaptation. These two transitions 
differ in the speed of change and the degree of modification to farm 
practices. Thus, the implementation of new practices is more or less 
gradual and can involve profound technical changes (Chantre and Car
dona, 2014; Lamine, 2011; Padel et al., 2020; Toffolini et al., 2017). 

During a transition towards pesticide use reduction, changes with 
various intensities can be implemented (Hill and MacRae, 1996; 
Sutherland et al., 2012). Change intensity can be characterized with the 
Efficiency, Substitution and Redesign framework (ESR) (Hill and 
MacRae, 1996). Thus, changes are associated to a gain of Efficiency (e.g. 
dose reduction), Substitution (e.g. use of biocontrol product) or Redesign 
process (e.g. conversion to organic farming). Changes linked to Effi
ciency or Substitution are associated with a progressive transition while 
changes associated to redesign are linked to a more abrupt and direct 
transition (Hill and MacRae, 1996; Lamine and Bellon, 2009; Merot 
et al., 2019). Wilson's transition theory (Wilson, 2008), conceptualized 
the path during a transition as a succession of linear periods. The linear 
period determines the possibility of a system to go in one direction but 
being interrupted by a nodal point. 

Trajectory studies may help to characterize how farmers change as 
well as the factors and background of these changes (Cerf et al., 2010). 
Trajectory studies are carried out at different levels (organizational, 
technical, commercial, etc.) and can be linked to learning processes 
(Barbier and Lemery, 2000; Cerf et al., 2010). According to Ross et al. 
(2008), the transition process can be described according to three ele
ments. The first element is the agent of change, i.e. what triggers change 
(public policies, psychosocial factors, etc.). The second element corre
sponds to the effect of change, i.e. the difference between the initial state 

and the final state. The last element is the mechanism of change, which 
corresponds to the path taken between states, i.e. the trajectory from one 
state to another. Trajectory is here considered to be the path followed by 
a system during its transition from an initial state to a final state through 
intermediate states (Merot et al., 2019). Thus, a transition can be 
characterized by the initial point, the effect of the transition (direction 
and intensity), and the trajectory. 

Studying a vineyard or a production system trajectory involves the 
use of indicators. The selected indicators determine how the object of 
study is viewed. In the case of changes in practices, some studies have 
used the ESR framework established by Hill and MacRae (1996) to 
characterize the change implemented (Chantre et al., 2015; Merot et al., 
2019) or calculated technical scores (Dupré et al., 2017). These in
dicators can be used to visualize the trajectory sequentially. 

Transitions towards pesticide use reduction are distinct from farm to 
farm. Different solutions exist to implement change; for example, there 
are many levers to reduce pesticides in vineyards (use of biocontrol 
products, dose reduction or soil tillage to replace chemical weeding, etc.) 
(Jeuffroy et al., 2022). The chosen solutions can depend, for example, on 
the priority, the production mode and the specific farm context 
(Darnhofer et al., 2010). The technical changes made by farmers when 
transitioning towards a low-input system differed from one farm to 
another (Merot et al., 2019), even if different pathways can lead to the 
same final point (Deffontaines et al., 2020). 

To understand and summarize farm diversity, as observed in the 
DEPHY-farm network, during an agroecological transition, the notion of 
farm typology is often used (Teixeira et al., 2018). Building a typology is 
a way to simplify and group a variety of farm cases into fewer types to 
better understand this diversity (Alvarez et al., 2018, Landais, 1998). 
Typology can condense and summarize a large, heterogeneous dataset to 
identify patterns and describe or even compare these patterns (Alvarez 
et al., 2018; Cortez-Arriola et al., 2015; Köbrich et al., 2003). Typologies 
are a first step to understand the transition process because they are used 
to assess and explain the differences between farming systems under
going changes. In the literature, typologies built to analyse trajectories 
of practices mainly focus on the difference between initial and final 
points, sometimes taking an intermediate point and are based on qual
itative data. Thus the trajectories, as a succession of phases building a 
specific path between the initial and final point are scarcely taken into 
account in typologies. When taken into account, trajectory studies are 
generally based on small samples of farms (ranging from a dozen to 
thirty farms) and the building of the typology does not involve quanti
tative methods to analyse dynamics. Such methods would become 
necessary when analysing large databases such as the DEPHY-Farm 
database. 

We assumed that different strategies of pesticide use reduction exist 
but these strategies are difficult to identify given the diversity of pro
duction contexts among the different winegrowing regions. A major 
obstacle to the trajectories study is the need for a high amount of data 
over a long time. A method is needed to characterize the long-term 
dynamic of pesticide use so as go beyond regional effects. In fact, the 
method must overcome the diversity of the production contexts by 
identifying indicators derived from the individual trajectory and which 
are used to assess the dynamic. This paper aims to summarize and 
characterize the diversity of individual farms' pesticide use trajectories 
within the DEPHY network at a national scale (France) in a way that 
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reflects the long-term dynamic of pesticide use reduction and goes 
beyond the regional effects. 

To describe the diversity of transitions, we developed a typology to 
analyse pesticide use trajectory based on the calculation of indicators 
linked to the change in TFI. We consider these trajectories as mathe
matical trajectories (i.e. trajectory of quantitative data and numeric 
variables) to differentiate them from the mechanisms underlying the 
transition process (i.e. trajectory built on qualitative data and variables). 
We also described the different technical changes identified through 
performances evolution by Fouillet et al. (2022) with the Agrosyst 
database for each type of pesticide use trajectory to identify which levers 
can be implemented to reduce pesticide use. 

2. Materials and methods 

2.1. Vineyard system 

Grapevine is a perennial plant, often planted in monoculture, which 
faces strong pest and disease pressures. Several threats can cause major 
damage, thus impacting the qualitative and quantitative characteristics 
of grapevine production (Fermaud et al., 2016). Pesticide applications 
remain the most effective way to control pest and diseases. In 2019, the 
average TFI for French vineyards was 12.4, with an average of 18 
treatments per year (Simonovici and Caray, 2021), whereas the average 
TFI for wheat (a major annual crop in France) was 4.9 in 2017 (Agreste, 
2020). Among pesticides, fungicides represent around 80% of pesticide 
use in vineyards. Most of these treatments aim to control downy mildew 
(Plasmopara viticola) and powdery mildew (Erysiphe necator). In
secticides account for <15% of pesticide treatments and are sprayed to 
control European grapevine moth (Lobesia botrana) and the leafhopper 
vector of Flavescence dorée (Scaphoideus titanus). Depending on the re
gion and year, treatments to prevent Flavescence dorée can be 
compulsory by law. Herbicides represent the remaining 5% of pesticide 
use (Mailly et al., 2017) but are still applied on 72% of vineyards 
(Simonovici and Caray, 2021) on the inter-row or/and under the vine 
row. Pathogen development is highly correlated to the climatic condi
tions of the vineyard (humidity, rainfall and wind) (Mailly et al., 2017). 
This relationship leads to a range of practices between and within 
winegrowing regions. 

2.2. The DEPHY network and the AGROSYST database 

The DEPHY network was created in 2010 with the aim of demon
strating the capacity of farms voluntarily enrolled in the network to 
reduce their pesticide use. The DEPHY network includes >4000 farms 
and covers all French production sectors. The vineyard sector is repre
sented by 280 farms that joined the network between 2010 and 2012 
and an additional 270 farms that joined in 2016. Farms entering the 
network in 2016 join an existing group or form a new group depending 
on their location. The vineyards involved in the DEPHY network are 
divided into 49 groups across the main French winegrowing regions. 
Each group is composed of around a dozen winegrowers and is facili
tated by a network engineer who supports the winegrowers in their ef
forts to reduce pesticide use with individual assistance and collective 
projects. The role of network engineer is essential in the motivation for 
change, in the choice of levers to implement and the dynamic of 
implementation. Engineers promote generic and well-known levers of 
pesticide reduction (dose reduction, frequency of treatment, choice of 
the products, equipment adjustments…), as well as tools to better 
schedule pesticide applications (e.g. decision support system for dose 
and date choice). When entering the network, winegrowers engaged 
part of their plots within the DEPHY-network named “cropping system” 
by the network. 

The network engineer collects information on the phytosanitary 
strategy for each farm every year and enter the data into a database 
(AGROSYST Information System). Each phytosanitary intervention is 

recorded in the database with the dose and the name of the product. 
To encourage data analysis and monitor pesticide use evolution, the 

AGROSYST database was created to compile information about the 
farming systems: farm context (e.g. agricultural area, farm equipment), 
phytosanitary strategy (all information on treatments: applied dose and 
product sprayed, etc.) and agronomic indicators such as yield. Other 
performance indicators available in the database (e.g. number of carci
nogenic, mutagenic or toxic for reproduction (CMR) products used or 
the quantity of sulphur and copper applied) have been calculated using 
the raw data. When a farm joins the network, a diagnostic is performed 
with the farmer to collect information on its “initial point” based on the 
previous three years. Farming system details are then collected every 
year. 

Data available for 373 vineyards (i.e. 89% of the network) between 
2017 and 2019 reported the different levers mobilized in the DEPHY 
network. Among the levers most mobilized, the dose regulation (with or 
without DSS) (80%), mechanical weeding to replace herbicide product 
(76%) and the use of biocontrol products (e.g. sulphur products) (53%) 
were observed (internal communication). Few winegrowers mobilized 
levers based on prophylactic measures (18%). Therefore, we expect to 
see a decrease of the use synthetic products (fungicide and herbicide) 
linked to an increase and biocontrol products (Substitution strategy). 
Since most of the levers focus on the phytosanitary strategy, we should 
be able to capture the differences in phytosanitary strategy through the 
phytosanitary performances. 

Only vineyards with >6 years of data were evaluated for this study. 
We selected a total of 161 farms entered between 2010 and 2011 in the 
network. These farms were distributed across 11 major French wine
growing regions: Alsace, Bordeaux, Bouches-du-Rhône, Bugey-Savoie, 
Champagne, Burgundy, Charente, Côtes-du-Rhône, Gaillac, Provence 
and Loire Valley. 

2.3. TFI calculation 

We assessed pesticide use by using the treatment frequency index 
(TFI, Pingault et al., 2008). TFI is the main indicator used within the 
DEPHY network to monitor pesticide use. TFI is the sum, for each 
pesticide product applied during the crop season, of the ratio between 
the applied dose and the full registered and recommended dose (Brunet 
et al., 2008; Fouillet et al., 2022). Different methods to calculate the TFI 
exist and differ regarding the full registered dose, either established by 
product or by targeted pest or disease. The TFI used in our study cor
responds to the applied dose expressed as a fraction of the dose rec
ommended to control specific targeted pests or diseases and by the 
proportion of sprayed area (see Eq. 1). 

TFI =
∑

P

Dose sprayedp

Dose recommendedp
×

Area sprayedP

Area totalP
(1) 

Eq.(1): Calculation of the TFI (Pingault et al., 2008) for a given year 
at the farming system scale. The dose sprayed per product corresponds 
to Dose_sprayed; the recommended dose for a product P for the target 
pest is Dose_recommended; Area_sprayed represents the surface area 
where the product was applied and Area_total is the total surface of the 
field where the treatment was sprayed (Pingault et al., 2008). 

The recommended doses per product and per targeted pest/disease 
were extracted from the e-phy database published by the French Min
istry of Agriculture (Ministère de l'Agriculture et de l'Alimentation, 
2021). The e-phy database for 2020 was used for all 10 years of the study 
in order not to take into account the variations of the dose regulations 
during this period. The variables dose_sprayed, area_sprayed, area_total 
and the product name were directly available from the AGROSYST 
database. 

For 3% of the treatments, we were not able to identify the product in 
the official database. As proposed in Fouillet et al. (2022), for these 
treatments we assigned a TFI of 1, which stands for a full dose applied to 
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a given area. The TFI for a growing season corresponds to the sum of the 
TFI per treatment for all interventions performed during that growing 
season (see Eq. 1). We differentiated partial TFI depending on the target 
of the treatment: fungicide TFI (TFIf), herbicide TFI (TFIh) and insecti
cide/acaricide TFI (TFIi). The TFI biocontrol was calculated separately 
following the principle of Eq. 1 for the interventions based on the list of 
biocontrol products (sulphur, macroorganisms, microorganisms, natural 
substances, pheromones, elicitors). 

All the variables used to calculate the TFI are summarized in Sup
plementary data 1. 

2.4. Indicators used to build the typology 

To characterize the type of pesticide use trajectories within the 
DEPHY network, six indicators were calculated using the TFI for each 
farm. These indicators can be used to describe the transition process. 
Some of the calculated indicators were adapted from the method of 
Martin et al. (2017) used by Bouttes et al. (2018) and Perrin et al. 
(2020). This method took into account the trends in farm performances: 
i) the slope of a linear model reveals the general trend (increase, 
decrease or stagnation), ii) the range of the residuals to evaluate the 
robustness and variability of the measurement and iii) the sum of 
squared deviations estimates the overall variability of the farming sys
tem. In total, the six indicators were calculated: the initial normalized 
TFI, the final TFI, the slope, the sum of square deviation, the maximum 
variation and the slope break (see Fig. 1). 

In our case study, we first characterized for each vineyard the initial 
and “final” state of the transition and extracted the two following in
dicators to characterize changes:  

- the initial normalized TFI (normalized_TFI) corresponds to the ratio 
between the initial TFI in a vineyard and the regional TFI provided 
by the French Ministerial Statistical Service for Agriculture data. The 
normalization let to eliminate the winegrowing region effect. In fact, 
the indicator initial normalized_TFI reflects the intensity of pesticide 
reduction compared to other vineyards in the same winegrowing 
region. The database from the French Ministerial Statistical Service 
for Agriculture is representative of the cropping practices in the 
different French winegrowing regions. The surveys are conducted 
every three years at the field scale on a representative sample of 4000 
farms. For farms which entered the DEPHY network in 2010, the 
initial TFI was calculated using the data from 2008, 2009 and 2010. 
For the farms which entered in 2011, the calculation was made using 
the 2009, 2010 and 2011 data. The normalization was performed 

with the 2010 regional TFI. A normalized TFI under 1 indicates that 
the winegrower is using less pesticide than the regional average.  

- the final TFI (final_TFI) corresponds to the mean TFI for the last three 
years (2017, 2018, 2019)to be consistent with the initial point 
calculation and to limit the year effect. The final TFI is an un- 
normalized value. 

These first two indicators were completed by indicators of the tra
jectory. We used a linear model to characterize the pesticide use tra
jectory based on TFI evolution (data not normalized) over the 10-year 
period. For each production system, several indicators were extracted:  

- the slope (slope) was used to characterize the path taken from the 
initial TFI to TFI in 2019;  

- the sum of squared deviations (SSD) was calculated to characterize 
the variability around the slope  

- the maximum variation (max_variability) corresponds to the 
maximum residuals having the largest absolute value were extracted 
to indicate the variability of the TFI over the 10-year study period. 

Trajectories are not necessarily linear and regular, and ruptures can 
occur (Wilson, 2007).  

- the slope break (slope_break) was used to characterized ruptures 
during the trajectory. In order to qualify these ruptures, two- 
piecewise continuous linear regressions were conducted for each 
farm. Two-piecewise linear models are a common nonlinear model 
which assume the existence of a breakpoint at the junction of two- 
line segments. The location of the breakpoint was considered as a 
model parameter and the most relevant value was found by 
maximum likelihood. The slopes of the lines before and after the 
“best” hypothetic breakpoint were compared. The slope change is 
used to evaluate if the farming system was experiencing a break 
during the pesticide reduction process. We hypothesized that only 
one main rupture happened during the transition. We also hypoth
esized that a rupture could happen during the re-engagement of 
farms in 2016. 

2.5. Indicators describing the phytosanitary strategies and used to explain 
the types of TFI trajectories 

To identify changes in the phytosanitary strategy that were imple
mented to reduce pesticide use, we looked at the management practices 
used by the DEPHY farmers highlighted in the study by (Fouillet et al., 

Fig. 1. Overview of the indicators calculated to set up the pesticide use trajectory typology inspired by the methodology from Martin et al. (2017). The slope was 
obtained with the linear regression over time based on the raw measurement, and the maximal residual of the regression was extracted. The piecewise regression was 
used to identify the existence of a transitional rupture. The initial TFI and final TFI were also extracted. 
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2022). The list of the data we used for the study are summarized in the 
Supplementary data 2. All the indicators used to characterize changes in 
the phytosanitary practices are available in the AGROSYST database. 
The different management practices studied were: the type of product 
used, the applied dose per treatment, the use of chemical herbicide and 
the production mode. 

We described changes in the type of product used, the applied dose 
per treatment, use of chemical herbicide and production mode by us the 
Efficiency, Substitution, Redesign (ESR) framework (Hill and MacRae, 
1996; Pretty et al., 2018). The ESR framework distinguishes three 
different changes: the first type of changes (E, efficiency) mainly seeks to 
resources optimisation, the second type of changes (S, substitution) is 
mostly based on the substitution of one or more elements (i.e. products, 
equipment…) and the third changes (R, redesign) generally focused on 
reorganizing the production system. The redesign strategy is associated 
with both technical levers and the production mode (organic farming). 

Type of product used. 
First, we focused on the use of biocontrol products. The list of 

biocontrol products authorized by the Ministry of Agriculture includes 4 
categories: macroorganisms (insects, mites, etc.), microorganisms (bac
teria, viruses), chemical mediators (pheromones and elicitors) and nat
ural substances (biocontrol products are composed of substances present 
in the natural environment and can be of plant, animal or mineral 
origin). These new compounds in the products are more leachable and 
the frequency of application is more dependent on rainfalls. (Rouault 
et al., 2016). A change of product was characterized as a substitution. 
The substitution of chemical products with biocontrol involves a 
different reasoning of the treatments (increase of the number of treat
ments). To characterize the use of biocontrol products, we used several 
indicators:  

• Whether or not a biocontrol product was used  
• The biocontrol share (TFI biocontrol over total TFI)  
• The sulphur quantity applied. Sulphur products are considered by 

French regulations as biocontrol products. In organic vineyards, 
sulphur is mostly used to control powdery mildew. 

• The use of mating disruption (biocontrol product) against the leaf
hopper vector of Flavescence dorée. 

Then, we focused on the use of copper products. Copper products are 
not considered to be a biocontrol product but are authorized and mostly 
used in organic farming against downy mildew. Similar as the sulphur 
product, copper products are more leachable. Indicators used to char
acterize copper products used were:  

• Whether or not a copper product was used  
• The quantity of copper sprayed 

The number of carcinogenic, mutagenic or toxic for reproduction 
(CMR) products sprayed was also characterized. 

Applied dose per treatment (fungicides, herbicides, insecticides). 
The dose sprayed indicates if a dose was adapted to the current situation 
with a more or less complex decision-making process (for fungicide and 
insecticides products). Decision Support System or dose adaptation 
depending on climate and phenological stage are tools highly imple
mented by the winegrowers in the DEPHY-Network (internal commu
nication). In 2019, 80% of the farms were using these levers to reduce 
their pesticide use. The DSS are nowadays well known (DECItrait or 
Optidose) and are often proposed to the winegrowers when they are 
joining the DEPHY network. Pesticide use can be reduced by 30–50% in 
vineyard systems by using decision support system (Thiollet-Scholtus 
et al., 2019). 

An herbicide dose reduction indicates a change in the weeded strip 
under the row or the stopping of the weeding in the inter-row. Dose 
reduction was qualified as gain of efficiency. 

Use of chemical herbicides. Even if herbicide represents a small 

part of the TFI, stopping the use of herbicide product implies organi
zational change (e.g. increase in work time, increase of the cost (Jacquet 
et al., 2019). If the TFIh was zero, we considered that the winegrowers 
were implementing mechanical weeding under the row (Fouillet et al., 
2022). Replacing the use of herbicide product by mechanical weeding 
was qualified as redesign (Merot et al., 2019). 

The production mode (conventional farming, organic farming or 
farming system in conversion) was also available in the database. The 
conversion to organic farming implies the implementation of several 
levers (the stopping of systemic product and herbicide product) (Merot 
et al., 2019). Hill and MacRae (1996) qualified the conversion towards 
organic farming as redesign. 

Data on behavioral levers (e.g. use of decision support systems) are 
not available in the database; the indicators used are mainly quantitative 
indicators linked to the use of phytosanitary treatments. 

2.6. Statistical analysis and data processing 

The data were processed with R software v. 3.6.2 (R Core Team, 
2019) and Rstudio v. 1.3.1093 (RStudio Team, 2020) with the Tidyverse 
package (Wickham et al., 2019) and the broom package (Robinson and 
Hayes, 2020). The graphics were made using the ggplot2 package 
(Wickham, 2016). 

2.6.1. Statistical method used to build the typology 
The typology was based on the indicators presented in section 2.4. A 

principal component analysis (PCA) followed by a hierarchical cluster 
analysis (HCA) were performed using FactoMineR (Lê et al., 2008). 

We performed the PCA with the six indicators to identify the re
lationships between the variables. The missing values represented only 
0.6% of the data, which is why the missing values were replaced by the 
mean of the variable. 

The farm trajectory typology was then produced using an HCA on the 
coordinates on the PCA axes with an eigenvalue >1 (Kaiser criterion). 
We used the Euclidean distance computed on the factorial coordinate of 
the individuals. We identified the optimum number of clusters based on 
the largest relative loss of inertia using Ward's method. 

2.6.2. Characterization of the different clusters of pesticide use trajectory 
In order to compare the indicators used to set up the typology be

tween clusters, we used a one-way ANOVA and Tukey test for numeric 
and continuous indicators with normal distribution of the errors. A non- 
parametric test (Kruskall-Wallis) and Wilcoxon test were used for non- 
normal distribution. 

We assessed changes in the phytosanitary strategy indicators by 
comparing the initial point (un-normalized) and final points between 
and within clusters. For indicators computed as proportions, we used a 
Pearson's chi-squared test to test the change in indicators between the 
initial and final point between and within clusters. To test the evolution 
of numeric indicators between the initial and final points, we used a t- 
test. P-values are mentioned throughout the results section. 

3. Results 

3.1. Typology of pesticide use trajectory 

3.1.1. Classification quality 
The dataset used for the classification contained 161 farms. The first 

two components of the PCA combined 67.9% of the variance. The first 
PCA component, which accounts for 40.8% of the total variance, ex
presses the strong positive correlation between the normalized TFI upon 
entry in the network and the SSD. The variable slope and the slope 
change are also associated with this component. The second component, 
which explains 27.1% of the variance, is associated with three variables: 
final_TFI, max_variability and slope change. The HCA was based on the 
first 2 components of the PCA. 
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3.1.2. Typology 
Three clusters of 75, 53 and 33 farms were identified. All indicators 

were significantly related to each cluster (Supplementary data 3). The 
three types are present in almost every winegrowing region and every 
group (see Supplementary data 4 and 5) but in different proportions. 
Farms belonging to cluster 2 were dominant in the Bouches-du-Rhône, 
Provence and Alsace. In Charente and Côtes-du-Rhône, there were no 
farms in cluster 3. Farms belonging to cluster 1 were mainly in the Loire 
Valley, Charente and Côtes-du-Rhône. 

The three different types of pesticide use trajectories are differenti
ated (Fig. 2.1). The first type, cluster 1, corresponds to farms with lower 
pesticide use than cluster 3 when entering the DEPHY network and 
which did not decrease their TFI. The second type, cluster 2, also cor
responds to farms with lower initial pesticide use upon entering the 
network than cluster 3 and which decreased their TFI over the 10-year 
period. The last type, cluster 3, corresponds to farms with the highest 
level of pesticide use at the initial point among the three clusters and 
which achieved a substantial pesticide reduction over the 10-year 
period. 

When looking at TFI changes according to winegrowing regions, the 
same trends were observed visually even in different regions (see sup
plementary 6). For example, for Bordeaux and Champagne (Fig. 2.2 and 
2.3), the mean trajectories show similar trends but some differences are 
still observed. More inter-annual variability is observed for each cluster 
in Champagne (e.g. TFI pikes in 2012). 

3.1.3. Characteristics of the six TFI trajectory indicators for the three 
clusters 

Cluster 1 farms presented a mean normalized TFI that was similar to 
the national standards (0.89). The mean TFI at the initial point was 11.6 
and the mean final TFI was 9.7, which corresponds to a decrease of 1.9 
TFI points. Farms in this cluster had the smallest TFI reduction 
(− 16.4%). The mean slope is − 0.23 TFI points per year. The farming 
systems in cluster 1 had the smallest maximum variability (0.37) and a 
mean SSD of 14.47. A total of 30.6% of farms in this cluster experienced 
a break in their trajectories. The median year of TFI slope change for 
these farms was 2015, with a positive mean increase of 0.68. This in
crease indicates a slowdown in the TFI decrease process. 

Cluster 2 farms were characterized by the smallest normalized initial 

TFI (0.52), meaning that before entering in the network, these farms 
were already applying around half the quantity of pesticides than other 
farms in the region. In the network, these farms still reduced their TFI by 
48.7% with an initial TFI of 8.2 and a final TFI of 4.2, which corresponds 
to a decrease of 4 TFI points. The mean slope is − 0.32. The cluster 2 
farms also had the highest variability (0.86) but a low SSD (17.8). A total 
of 24% of these farms experienced a break in their trajectories during the 
10-year period. The mean slope change was − 1, indicating an acceler
ation in the process of pesticide use reduction. The median year of TFI 
slope change was 2013. 

Cluster 3 farms had the highest initial TFI, higher than the national 
trends (1.53). The mean TFI at the initial point was 20.8 and the mean 
final TFI was 7.7, which corresponds to a decrease of 13.1 TFI points. 
The farms in this cluster had the highest TFI reduction rate (− 63%) and 
the highest slope (− 1.38). A large variability was observed: the SSD was 
highest for cluster 3 with a mean of 113 and the mean maximum of 
variability was 0.42. A total of 30% of the farms in cluster 3 experienced 
a break in their trajectories. A mean slope change of − 1.7 was observed, 
indicating an acceleration in the process of pesticide use reduction. The 
median year of the slope change was 2014. 

The initial normalized TFI, slope change and SSD were not signifi
cantly different for clusters 1 and 2 (Fig. 3). No significant difference 
was identified for the slope break for clusters 2 and 3 (p-value >0.05). 

No significant difference was identified for the maximum variability 
for clusters 1 and 3. The final point distribution was significantly 
different among the three clusters. 

3.2. Levers implemented within clusters identified with pesticide use 
evolution 

3.2.1. Disease control 
The t-test showed a significant difference between the TFI at the 

initialand final pointsfor the three clusters (t-test, p < 0.001, Table 2). 
The percentage of decrease, calculated between the initial point and the 
final point, was − 16.4% for cluster 1, − 49.7% for cluster 2 and − 63% 
for cluster 3. The same trends are observed for the TFIf as all clusters 
significantly reduced their fungicide use from the initial to the final 
point (t-test, p < 0.05, Table 2). The reduction of the fungicide dose 
applied per treatment was significantly different between the initial and 

Fig. 2. Change in the TFI per cluster (1.) 
Mean pesticide use trajectory per cluster. (2.) 
Change in the TFI per cluster in Bordeaux. The 
bold lines correspond to the average trajec
tories by type. The thin lines correspond to the 
individual trajectories. (3.) Change in the TFI 
per cluster in Champagne. The bold lines 
correspond to the average trajectories by type. 
The thin lines correspond to the individual 
trajectories. The changes in the TFI for the 
other winegrowing regions are available in 
Supplementary data 6. Cluster 1 is represented 
by the blue line, cluster 2 by the grey line and 
cluster 3 by the yellow line. (For interpreta
tion of the references to colour in this figure 
legend, the reader is referred to the web 
version of this article.)   
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final points within the 3 clusters (t-test, p < 0.001, Fig. 5B). A significant 
fungicide dose reduction from 11.6% from the initial point to 2019 was 
observed within cluster 1, − 42.8% for cluster 2 and − 43.6% for cluster 
3. 

At the initial point, the proportion of farms using biocontrol products 
was significantly different among the clusters (Pearson's chi-squared 
test, p < 0.05, Table 1). Cluster 2 had the highest proportion of 
farming systems using biocontrol products at the initial point (79.3%). 
An average 80% of the farms in the three clusters used biocontrol 
products at the final point (Fig. 5A). The TFIbiocontrol product increased 
significantly for cluster 2 over the 10-year period (t-test, p < 0.01). The 
percentage of farms using biocontrol increased over the 10-year period 
for clusters 1 and 3 (Pearson's chi-squared test, p < 0.05). The biocontrol 
rate increased significantly over the 10-year period (t-test, p < 0.05): 
+74.5% in cluster 2 and + 115% for cluster 3. The change in cluster 1 
(+32.3%) was not significant. 

The proportion of farms using copper and sulphur products was not 
significantly different between clusters at the initial point or at the final 
point (Pearson's chi-squared test, p > 0.05). Additionally, the change in 
the number of farms using copper and sulphur was similar between the 
initial and final points for the three clusters (Pearson's chi-squared test, 
p > 0.05). The quantity of copper products was stable over the 10 years 
for the 3 clusters (t-test, p > 0.05). The quantity of sulphur applied 

increased for cluster 2 between initial and final point (t-test, p < 0.01, 
Fig. 5F). 

The proportion of farms using CMR products was significantly 
different among clusters both at the initial point and when tested at the 
final point (Pearson's chi-squared test, p < 0.01 for the initial and final 
points, Table 2). Regarding the change between the initial and final 
points, the highest rate of decrease of CMR product use was for the 
cluster 2 farms: at the final point, only 13% of the farms were using CMR 
products (Fig. 5E). Cluster 3 had the highest proportion of farms using 
CMR products at the initial and final points. The mean number of CMR 
products used decreased significantly over the 10-year period for all 3 
clusters (t-test, p < 0.001). Cluster 3 farms had the highest number of 
CMR products used at the initial point (10.4). At the final point, cluster 3 
farms had the highest number of CMR products used (3.1), similar to 
cluster 1 (2.9). 

3.2.2. Weed control 
The change in the TFIh between the initial and final points was 

significantly different for clusters 2 and 3, indicating a significant 
reduction in the use of herbicidal products (t-test, p < 0.05, Table 2). The 
change between the initial and final points in the proportion of farms 
using herbicides was significantly different within the three clusters 
(Pearson's chi-squared test, p < 0.05, Table 1, Fig. 5C). The proportion of 

kaerb

Fig. 3. Distribution of the calculated indicators per cluster. (1.) Initial point normalized the red line represent the mean level of pesticide use at the national scale (2.) 
Final point, (3.) Slope, (4.) Slope break, (5.) Maximum variability, (6.) Sum square deviation (SSD). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
The horizontal black lines across the boxes represent the median. The end of the boxes represents the first and third quartiles; the whiskers indicate the minimum and 
maximum values. For a given indicator, distributions per cluster are significantly different if associated with a different letter (Wilcoxon test, p < 0.05 or Tukey test, 
p-value < 0.05). 
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farms among clusters using herbicides was similar at the initial point 
(Pearson's chi-squared test, p-value = 0.12) but significantly different at 
the final point (Pearson's chi-squared test, p-value <0.001). A significant 
decrease in the applied dose was observed for the three clusters between 
the initial and final points (t-test, p < 0.01, Table 2). Farms from cluster 
1 managed to reduce their dose applications by 70%, from a mean dose 
of 0.61 to a mean dose of 0.19. 

3.2.3. Pest control 
Regarding the change in insecticidal management, a non-significant 

decrease in the TFIi was observed in all clusters (t-test, p > 0.05, 
Table 2). However, a significant decrease in the TFIi per treatment was 
observed for cluster 1 and cluster 3 (t-test, p < 0.05). The proportion of 
farms using insecticidal products was significantly different among 
clusters at both the initial and final points (Pearson's chi-squared test, p 
< 0.05, Table 1, Fig. 5D). The proportion of farms from clusters 1 and 2 
using insecticidal products decreased by 19% and 46.8%, respectively. 
The proportion of farms using mating disruption significantly increased 
over the 10-year period in all three clusters (Pearson's chi-squared test, 
p < 0.001). In 2010, the proportion of farms using mating disruption 
was similar among clusters (Pearson's chi-squared test, p = 0.12) but was 
significantly different at the final point (Pearson's chi-squared test, p <

0.001). 

3.2.4. Production modes 
The proportion of production modes (conventional farming, organic 

farming or in conversion) between clusters was significantly different at 
the initial and final points (Pearson's chi-squared test, p < 0.001, 
Table 1, Fig. 4). At the initial point, 100% of the farms in clusters 1 and 3 
had a conventional farming system. At the final point, a large majority of 
the farms had conventional farming systems in cluster 3 (90.6%) and 
cluster 1 (98.5%). For the cluster 2 farms, a higher proportion of farms 
had an organic farming system (36.7% at the initial point) compared to 
clusters 1 and 3 (0% for both). In cluster 2, farming systems in conver
sion to organic farming appeared as soon as they entered the network. 
For cluster 3, conversions towards organic farming started in 2016 and 
represented 6.3% of the cluster. The proportion of farming systems in 
conversion to organic farming in 2019 at the final point was 1.5% for 
cluster 1 and 3.1% for cluster 3. Cluster 1 did not include any farms with 
organic farming systems at the final point. However, the proportion of 
farms depending on the production mode were similar between the 
initial and final points within each cluster (Table 1). 

Table 1 
Change in the technical levers between initial and final points. Pearson's chi-squared test was conducted between the initial and final points within and between 
clusters.    

Cluster 1 
(n = 75) 

Cluster 2 
(n = 53) 

Cluster 3 
(n = 33) 

Comparison 
between 
clusters 
(Chi2)   

Initial 
Point 

Final 
Point 

Chi2 Initial 
Point 

Final 
Point 

Chi2 Initial 
Point 

Final 
Point 

Chi2 IP FP 

Type of farming 
system 

% of farms in conventional 
farming 

100% 98.5%   

NS 

59.2% 44.4%   

NS 

100% 90.6%   

NS   ***   *** % of farms in conversion 0% 1.49 4.1% 4.44% 0% 3.1% 
% of farms in organic farming 0% 0% 36.7% 55.16% 0% 6.3% 

Phytosanitary 
strategy – 
Fungal pressure 

% of farms using biocontrol 
products 

65.33% 81.33% ** 79.25% 83.02% NS 63.64% 75.79% * * NS 

% of farms using sulphur 
products 

60% 70.67% NS 77.36% 81.13% NS 66.67% 72.73% NS NS NS 

% of farms using copper 
products 

74.7% 77.3% NS 90.6% 86.8% NS 81.8% 87.9% NS NS NS 

% of farms using CMR products 86.7% 52% *** 58.5% 13% *** 97% 54.5% *** *** *** 
Phytosanitary 

strategy – 
Insect pressure 

% of systems using insecticides 
products 

44% 48% NS 35.84% 24.53% NS 63.64% 51.52% NS * ** 

% of farms using mating 
disruption 

4% 34.67% *** 7.55% 77.36% *** 6.1% 45.45% *** NS *** 

Phytosanitary 
strategy – 
Weed pressure 

% of farms using herbicides 81.33% 64% * 54.72% 16.98% *** 87.88% 72.2% ** *** NS 

NS: p > 0.05; *: p < 0. 1; **: p < 0.01; ***: p < 0.001. 

Table 2 
Change in the technical levers over time. T-tests were conducted to assess whether the reduction was significant.    

Cluster 1 
(n =75) 

Cluster 2 
(n= 53) 

Cluster 3 
(n= 33) 

Pesticide strategy 

Change in the mean TFI − 14.7% *** − 40.7% *** − 60.1% *** 
Change in the TFIbiocontrol +4% NS +46.6 ** − 7% NS 
Change in the biocontrol share + 32.3% NS +74.5 *** +115% *** 
Change in the number of CMR products − 65.8% *** − 90.2% *** − 70.2% *** 

Pesticide strategy – Fungicidal pressure 

Change in the sulphur quantity sprayed +26.4% NS +59.5% ** +77.6% NS 
Change in the copper quantity sprayed +15.05% NS +52.56% NS − 13.8% NS 
Change in the TFIf − 7.3% ** − 44.4% ** − 57.7% * 
Change in the fungicide dose applied per treatment − 23.8% *** − 42.8% *** − 43.6% *** 

Pesticide strategy –Insecticidal pressure Change in the TFIi − 21% NS − 2.5% NS − 10% NS 
Change in the insecticidal dose applied per treatment − 11.6 % * +10% NS − 13.6% ** 

Pesticide strategy – Herbicidal pressure Change in the TFIh (including TFI = 0) − 24% NS − 0.77% ** − 80% *** 
Change in the herbicide dose applied per treatment − 20.6% * +7.4% NS − 55.7% *** 

NS: p > 0.05; *: p < 0. 1; **: p < 0.01; ***: p < 0.001. 
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3.3. Change intensity 

Looking at each type, we observed that cluster 1 corresponded to 
farms that were already using pesticides efficiently when they entered 
the network: their normalized initial TFI was lower than 1 at the initial 
point. It seems that these farms did not implement new levers, and a 
large majority of them continued using CMR products and herbicides 
(Fig. 4). However, a progressive transition towards reducing herbicide, 
insecticide and fungicide doses was observed. These farms moved to
wards greater efficiency and substitution. 

When we looked at cluster 2 farms, we noticed that they were 
already well advanced in terms of efficient pesticide use (Fig. 5). In all, 
36.7% of farms were engaged in organic farming at the initial point and 
55.2% at the final point. A few farms were already using CMR and 
herbicidal products (58.5%). A high dose reduction of TFIf was observed 
and associated with an increase in efficiency. The reduction in the 
sprayed fungicide dose with no decrease in the quantity of copper 
products used demonstrated efficiency-based strategies. At the final 
point, a large majority of the farms were using mating disruption and 
biocontrol products. These changes were related to the large of the farms 
in organic farming or in conversion to organic farming. The technical 
levers associated with this mode of production were the use of copper 
and sulphur, the cessation of systemic products and the implementation 
of soil tillage when farms stopped using herbicides. 

Cluster 3 farms entered the DEPHY network with a high consumption 
of pesticide products and experienced the highest TFI decrease (Fig. 5). 
Looking at the changes occurring over the 10-year study period, we 
observed a high dose reduction affecting all phytosanitary treatments 
(insecticides, fungicides and herbicides). The reduction of the TFIh and 
the slight reduction of the number of farms using herbicides indicated a 
decrease in the weeded strip (only under the row) rather than a total 
cessation of herbicide use as observed in cluster 2. The biocontrol rate 
over the global TFI increased while the TFI biocontrol remained stable. 
These changes indicate a reduction of the TFI without substituting 
biocontrol products. All these elements indicate substantial efficiency 

gains and substitution in these farms. 
In summary, based on the ESR framework from Hill and MacRae 

(1996) the pesticide reduction strategies for cluster 1 and cluster 3 were 
mainly based on efficiency and substitution and differed in their initial 
levels of pesticide use when entering the network (Fig. 6). Cluster 2 
farms undertook deeper changes, moving towards more redesign-based 
changes (Fig. 6). 

4. Discussion 

This paper aimed to characterize and understand the various pesti
cide use trajectories within the DEPHY network. The method used 
allowed us to identify three types of pesticide use trajectories. The three 
types were significantly differentiated by their initial TFI, the path taken 
(slope, decrease, variability, and rupture) and their final TFI. The farms 
were categorized into the different types and are found across all 
winegrowing regions. The typology developed was both robust and 
exceeded the winegrowing region effect, a factor that can impact 
pesticide use intensity (Fouillet et al., 2022). This means that the three 
types of trajectories identified were the result of the winegrowers' own 
strategies rather than the consequences of the particularities of the 
winegrowing region even if some minor differences in term of inter- 
annual variability was observed as in 2015–2019 for clusters 1 and 3. 

All three trajectory types showed a significant reduction in pesticide 
use, but the reduction differed in intensity. The farming systems in 
cluster 1 experienced the smallest TFI decrease (− 14.7%). Farming 
systems from cluster 2 managed to reduce their TFI by 40.7%, while the 
cluster 3 farming systems experienced the highest TFI decrease of 
68.8%. 

The differences in TFI reductions between clusters can be explained 
by the potential for improvement expressed at the initial point. Indeed, 
the farming systems from the three clusters differed in terms of the 
initial point. We observed that cluster 3 farms entered the DEPHY 
network with a high normalized TFI, indicating pesticide use that 
exceeded the national average. Cluster 1 and 2 farming systems both 

Production mode

Conventional farming

In conversion

Organic farming

Fig. 4. Change in the TFI by cluster and production mode. Outliers are not represented. Whiskers display the 5th and 95th percentiles. Horizontal bars indicate the 
first quartile, median and third quartile. 
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started with a lower initial TFI compared to the national average TFI 
value. However, their pesticide use reduction was different. Thus, the 
initial point appears to be a key point of the transition towards a low- 
input farming system. Ross et al. (2008) formalized that the path 
taken strongly depends on the initial state. Merot et al. (2020) showed 
by using a typology of technical changes for vineyards in conversion to 
organic farming that the path taken by farms was also highly dependent 
on the initial state. Our results suggest that it is easier for systems 
starting with a high TFI to reduce their TFI than for those starting with a 

low TFI to achieve further decreases. For winegrowers with an overuse 
of pesticide (Cluster 3), the modification of the phytosanitary strategy 
(dose reduction, change of product) is based on simple levers but with a 
high impact on the TFI. As the winegrowers from the cluster 3 had a use 
of pesticide product higher than the national average, it is therefore 
easier to reduce the pesticide use compared to those who are not over
using pesticide (cluster 1 and cluster 2). Also, slope breaks, reflecting a 
change in slope (increase or decrease) in the TFI trajectory, were 
observed in farms from all clusters rapidly after engaging in the network. 

Fig. 5. (A.) Change in the biocontrol rate based on the TFIbiocontrol between the initial point (IP) and final point (FP) for each cluster. (B). Change in the fungicide 
dose based on the TFIf change between the IP and FP for each cluster (C.) Change in the TFIh and the percentage of farms using herbicide products between the IP and 
FP for each cluster. (D.) Change in the percentage of farms using mating disruption depending on the mean TFIi per treatment between the IP and FP for each cluster. 
(E.) Change in the percentage of farms using carcinogenic, mutagenic, or toxic for reproduction (CMR) products based on the number of CMRs used between the IP 
and FP for each cluster. (F.) Change in the applied sulphur quantity based on the applied copper quantity between the IP and FP for each cluster. 

Fig. 6. Summary of changes observed 
between the initial point (IP) and final 
point (FP) for each cluster based on the 
Efficiency, Substitution, Redesign (ESR) 
framework (Hill and MacRae, 1996). 
The phytosanitary strategies of each 
cluster are positioned on an ESR 
gradient, which also includes conven
tional (corresponding to an absence of 
phytosanitary strategy reasoning). Prac
tices corresponding to each strategy 
were associated with each letter (con
ventional, E, S, R). Cluster 1 is repre
sented by the blue arrow, cluster 2 with 
the grey arrow and cluster 3 with the 
yellow arrow. (For interpretation of the 
references to colour in this figure 
legend, the reader is referred to the web 
version of this article.)   
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The slope break may also indicate a slowdown in the TFI decrease (i.e. 
abrupt decrease followed by a stagnation). For all clusters, the mean 
year of rupture takes place before 2014. 

The three clusters were also characterized by the variability around 
the slope, which provided information about the specific farming sys
tem's sensitivity and adaptation to abiotic and biotic hazards over time 
(Martin et al., 2017). These variabilities were partly linked to the 
adaptation of treatments to pest and disease pressure. The year effect on 
pesticide use was substantial (Mailly et al., 2017). An increase in the TFI 
was observed in 2016 and again in 2018 when winegrowers contended 
with severe infestations of downy mildew (Fouillet et al., 2022). Dif
ferences in climatic conditions also lead to variability in practices over 
time and space (Mailly et al., 2017). The highest variability around the 
slope was observed for cluster 2 farms. Cluster 1 corresponded to the 
farms with the smallest maximal variability and SSD. For clusters 2 and 
3, we observed a high dose reduction of fungicide treatments indicating 
that winegrowers in these clusters adapted their pesticide treatments 
depending on the period or pest and disease pressure (Fouillet et al., 
2022). Thus, looking at the difference in term of variability between 
clusters, we can assume that winegrowers who adapted their pesticide 
treatment according to pest and disease pressure experienced a higher 
variability of pesticide use. The more the winegrowers reduced their 
pesticide use the more the TFI varied within cluster: TFI increases were 
higher in years with high pressure, while TFI decreases were greater in 
years with low pressure. Unlike cluster 1 farms, the cluster 2 farms 
managed to adapt their phytosanitary practices according to the climatic 
conditions and pest and disease pressures. 

In our study, we considered an initial TFI (the year of entry into the 
network) and final TFI. The initial and final TFI are arbitrary because 
farmers may have started to reduce their pesticide use before entering 
the network and continued to implement technical levers after the final 
point. Unlike the conversion to organic farming, the reduction of 
pesticide use does not have a specific legal compliance period (Lamine 
et al., 2009). The speed and intensity of change was therefore different 
for each farmer. Practices can more easily be readjusted from one year to 
the next, such as when they are adapted to disease risks. Based on the 
example of the cluster 1 farms for which we did not observe redesign 
change, changes were mainly based on efficiency and substitution. Thus, 
change at a slow speed and low intensity was observed on farms already 
using pesticides efficiently before entering the DEPHY network. At the 
initial point, it seems that cluster 1 and 2 farms had already begun 
transitioning towards reducing their pesticide use based on their initial 
TFI and management strategies. Meanwhile, cluster 3 farms started with 
a high initial TFI, and the analysis of their pesticide strategies at the 
initial point indicated limited adjustments of phytosanitary treatments. 
The high TFI decrease indicated that entering the DEPHY network was 
associated with a trigger event (Sutherland et al., 2012) for the cluster 3 
winegrowers. Entering the network seemed to have less impact for farms 
in cluster 1, while farms in clusters 2 and 3 managed to quickly reduce 
their TFI. However, cluster 1 winegrowers maintained a low TFI 
throughout the 10-year period when entering the DEPHY network. 
However, farms that were already in organic farming when entering the 
network had lower pesticide use than conventional farms. 

Furthermore, the typology allowed us to characterize differences in 
technical changes that were implemented. In fact, clusters of TFI tra
jectories differed in terms of technical lever implementation and the 
intensity of change (Fig. 4 and 5). Winegrowers managed to reduce their 
pesticide use by combining these different technical levers. The differ
ence in terms of TFI reduction between clusters can be explained by the 
initial point as discussed previously as well as by the intensity of the 
changes implemented. The levers mobilized by all farms – dose reduc
tion and use of non-CMR products – constituted a first step in reducing 
pesticides. These changes mostly centred on efficiency and substitution. 
Other levers were, however, mobilized in clusters 2 and 3, such as 
mating disruption. Other levers, such as stopping herbicidal product 
applications, were distinctive for cluster 2, which saw the lowest 

pesticide use at the final point. The implementation of mechanical 
weeding indicated a higher intensity of change: the more herbicides 
were stopped, the more the TFI decreased. Implementation of mechan
ical weeding was the sign of changes on all cultural practices that 
contributed to pesticide use. Within cluster 2, a majority of farms had a 
production method associated with organic agriculture whose control of 
cryptogammic diseases relied mainly on the use of copper and sulphur. 
While organic farming practices in vineyards are seen as a way of 
reducing pesticide use, they lead to an increase in the application of 
other products such as copper and sulphur (Merot and Wery, 2017). 
However, the intensive use of these substances can be controversial (e.g. 
there is some debate on the ecotoxicity of copper). A study by Karimi 
et al. (2020) showed that the maximum authorized yearly dose of copper 
in France (6 kg/ha) had no significant impact on the soil quality func
tion. Regardless, reducing the use of these products requires the 
implementation of deeper change such as preventive measures (Jeuffroy 
et al., 2022). We found that the main levers implemented by the wine
growers were not disruptive practices. We observed that the more 
intensively these levers were implemented and combined, the more the 
TFI decreased. And the more these levers were implemented and com
bined, the more difficult it was to reduce TFI. 

Looking at the difference of initial point, the change intensity and the 
final point, we can assume that there was a kind of continuity between 
the TFI trajectories. By starting with a high pesticide use and experi
encing a high TFI decrease by implementing changes of low intensity 
(cluster 3 TFI trajectory), winegrowers had two possible pathways: i) a 
low pesticide use reduction linked to the implementation and adaptation 
of technical levers mainly based on efficiency and substitution (cluster 1 
TFI trajectory) or ii) achieving a greater pesticide use reduction by 
implementing levers associated to redesign strategy (cluster 2). We also 
hypothesized that the trajectory from cluster 2 could even be the con
tinuity of cluster 1 trajectory. While it was easy to reduce the TFI by 
implementing simple levers such as dose reduction or the use of 
biocontrol, to reduce the TFI sustainably, clusters 1 and 3 had to 
implement deeper changes. 

The three types of trajectories showed a connection to knowledge 
and learning. Trajectories of changes are not simply due to a willingness 
to adopt a new practice – they also depend on farmers' knowledge and 
efforts to learn (Sutherland et al., 2012). In terms of implementation, 
several studies showed that knowledge of change was acquired pro
gressively in connection with a learning process (Chantre, 2014; Chantre 
et al., 2015; Coquil et al., 2014). Some practices require special equip
ment, new skills and specific knowledge (Blesh and Wolf, 2014; Sale
mbier et al., 2020). For example, mechanical weeding is more complex 
than chemical weeding. This practice requires new knowledge about the 
state of the soil, vegetation and suitable equipment (Garcia et al., 2018). 
In terms of risks taken, mechanical weeding increases the costs of pro
duction and labour time (Jacquet et al., 2019). Changes in management 
strategy combined with technical changes increase the complexity of the 
farming operations (Aouadi et al., 2021). Obstacles related to the farm 
context (e.g. farm size, commercialization mode) also impact the tech
nical changes. Thus farmers need support from advisors or a peer group 
when implementing new practices and a system redesign aimed at 
pesticide reduction (Darré, 1985; Guichard et al., 2017). Advisory ser
vices provided by the network engineer in the DEPHY farm network 
played a key role in reducing TFI. Advisors supported and organized the 
learning process and knowledge capitalization (de Tourdonnet et al., 
2015). 

Finally, we showed that the normalized initial point indicated a 
potential of improvement available to winegrowers. To help wine
growers reduce their pesticide use, qualifying their initial point is a 
necessary step. Doing so can allow advisors to better guide winegrowers 
towards the levers they need to implement by identifying the levers they 
are already using and the levers which can be intensified. Whatever the 
trajectory type considered, this study showed that a deep redesign is 
complex to implement and implies taking risks that impact all 
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performances (e.g. yield loss) and the organization of farm operations 
(Aouadi et al., 2021; Jacquet et al., 2022). The implementation process 
is a key issue to support farmers in their change process. For farms 
wishing to engage in an agroecological transition, our results show that 
the support offered within the framework of the DEPHY network 
allowed farms to either reduce their TFI or maintain a lower TFI than the 
average. Nevertheless, these results show that the levers implemented 
and the changes made do not permit farmers to completely stop using 
pesticides. Other changes and innovations seem necessary to achieve 
this objective. 

Our study was based on the evolution of performances to identify the 
potential changes of practices. Agrosyst database, is a good tool to assess 
the evolution of performances and monitor the pesticide use evolution at 
the DEPHY-scale. This database has generated “big data” on farms 
moving towards pesticide use reduction, and the information it gathers 
makes it a unique source worldwide (Lamichhane et al., 2019). The 
typology used in this study allowed us to go beyond winegrowing region 
specificities and to gain knowledge in terms of genericity. This method 
makes it possible to see the general pesticide use trajectory of farms to 
better support farmers in their transition process. According to Perrot 
and Landais (1993), the methodological decisions will determine the 
typology depending on the objectives, the nature of data and the sample. 
Our method can be completed with: (i) the use of Partial Least Square to 
explain the diversity (Martin et al., 2017, Perrin et al., 2020); (ii) the use 
of linear mixed model with a selection of explanatory variable. There are 
only few approaches that take dynamics and trajectory into account. 
Dardonville et al. (2022) identified other methods to explore: the KLM 
method, a longitudinal data clustering algorithm to identify different 
type of trajectories or the KmlShape method, which groups time series 
into trajectories according to their shape and the intensity of variations, 
taking into account the time lag between variations in different series. 
However, these methods still need further development. The data pro
vided by the Agrosyst database give users information to study the 
impact of pesticide use reduction on other performances (i.e. yield, net 
margin…). 

The use of other performances could be interesting to understand the 
diversity of the trajectory of other performances linked to the pesticide 
use reduction but also to identify the lock-ins link to agro-ecological 
transition such as organizational (Merot et al., 2019), economical 
(Chèze et al., 2020) or behavioral lock-ins (Dessart et al., 2019). How
ever, this information is important to fully understand the process of 
change but are still missing in the database. The drivers of these changes 
are not observable in the database, for example information on the 
behavior (e.g. decision rules) and behavioral triggers (e.g. impact of the 
advisors on the change implementation). The database allows to work 
on a large scale and on data of 10 years which allows to gain in gener
icity by working on a large number of production systems but does not 
contain important information to understand some changes and the 
farmer's motivations to implement these changes. To guide policy design 
a better knowledge of the drivers influencing practices is necessary 
(Dessart et al., 2019; Finger and Möhring, 2022). This important infor
mation has to be accessed through survey instead, on a reduced sample. 

5. Conclusion 

The method constructed in this study allowed us to identify three 
pesticide use trajectories by integrating the dynamics in a large diversity 
of production contexts. The trajectories differed in terms of the types and 
intensity of changes implemented during the vineyard transition to
wards production systems with low pesticide use. We observed that le
vers used by farmers resulting in a pesticide use reduction were mainly 
based on efficiency (e.g. reducing fungicide dose) and substitution (use 
of biocontrol products). The same levers that were implemented in all 
types but with differences in terms of intensity explain the difference of 
pesticide use reduction. We found that the lower the TFI and the more 
intensively these levers were combined, the more the pesticide 

reduction was slow. The pesticide use reduction depended on the initial 
point and the levers implemented. These indicators should be take into 
account by advisors when supporting winegrowers in their pesticide use 
reduction. The types identified provide a solid foundation for further in- 
depth studies of the transition away from pesticide-intensive production 
systems to more precisely identify the levers implemented and their 
implementation over time. 
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l’utilisation des pesticides et en limiter les impacts environnementaux. In: Synthèse 
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(Expertise). INRAE. 

Jacquet, F., Jeuffroy, M.-H., Jouan, J., Le Cadre, E., Litrico, I., Malausa, T., Reboud, X., 
Huyghe, C., 2022. Pesticide-free agriculture as a new paradigm for research. Agron. 
Sustain. Dev. 42, 8. https://doi.org/10.1007/s13593-021-00742-8. 
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Köbrich, C., Rehman, T., Khan, M., 2003. Typification of farming systems for 
constructing representative farm models: two illustrations of the application of 
multi-variate analyses in Chile and Pakistan. Agric. Syst. 76, 141–157. https://doi. 
org/10.1016/S0308-521X(02)00013-6. 
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