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A B S T R A C T   

CONTEXT: Agricultural intensification contributes to global food security and well-being by supplying the food 
demand of a growing human population. However, ongoing land-use change and intensification seriously affect 
the abundance, diversity and distribution of species, besides many other impacts, thereby threatening the 
functioning of ecosystems worldwide. Despite the accumulating evidence that the current agricultural model is 
unsustainable, we are far from understanding the consequences of functional diversity loss for functioning and 
ecosystem service supply and the potential long-term threats to food security and human well-being. 
OBJECTIVE: In this review, we propose a conceptual framework to understand the relationships between func-
tional diversity and human well-being that also considers agroecosystem health. To this end, we identify the most 
commonly assumed relationships linking functional diversity to regulating and provisioning agroecosystem 
services and their importance for human well-being, emphasising the most serious knowledge gaps in the in-
dividual pathways of the conceptual framework. 
METHODS: A consortium formed by an international panel of experts from different disciplines including 
functional diversity, ecosystem services and human health compiled 275 articles. Members of the consortium 
proposed literature to exemplify each specific aspect of the conceptual framework in the text, in accordance with 
his/her field of expertise. The guideline for all experts was to focus mostly in current literature (38% of the 
references are from the last 5 years and 66% from the last decade), with special interest in reviews and synthesis 
articles (42% of the references), as well as meta-analyses and global studies (10% of the references). 
RESULTS AND CONCLUSIONS: The factors that influence agroecosystem health are extremely complex, involving 
both services and disservices related to land-use management and environmental conditions. The global human 
population needs sustainable and resilient agroecosystems and a concerted effort is needed to fundamentally 
redesign agricultural practices to feed the growing human population without further jeopardising the quality of 
life for future generations. We highlight the potential effects of land-use change and ecological intensification on 
the functional diversity of plant and animal communities, and the resulting consequences for ecosystem services 
and ultimately human health. 
SIGNIFICANCE: The resulting conceptual model is developed for researchers as well as policy makers high-
lighting the need for a holistic approach to understand diversity impacts on human well-being. Finally, we 
document a major knowledge gap due to the lack of any studies focusing on the full pathway from diversity to 
human well-being.   

1. Introduction 

1.1. Agricultural intensification 

Land-use change and agricultural intensification rapidly affect the 
distribution of species and the functioning of ecosystems worldwide 
(Pecl et al., 2017). Human needs are satisfied at the expense of habitat 
destruction, resource overexploitation or high levels of agrochemical 
inputs leading to alterations of biogeochemical cycles and the func-
tioning of ecosystems (Balvanera et al., 2006). Agricultural intensifica-
tion contributes to global food security and human health by supplying 
the food demand of a growing human population but also causes severe 
environmental problems (Landis, 2017). Multiple studies from around 
the world demonstrate that agricultural intensification leads to a ho-
mogenization of biotic communities (Landis, 2017; Gossner et al., 2016) 
and threatens the provision of various ecosystems services (Bartomeus 
et al., 2014; Geiger et al., 2010; Zhao et al., 2015). Agricultural inten-
sification leads to reduced biodiversity in all major taxonomic groups, 
such as plants (José-María et al., 2011; Sirami et al., 2019), microbiota 
(Banerjee et al., 2019), invertebrates (Rusch et al., 2015; Tsiafouli et al., 
2015), birds (Donald et al., 2006) and mammals (Gentili et al., 2014). 
Despite the accumulating evidence that the current agricultural model is 
unsustainable, we are far from understanding the consequences of di-
versity loss for ecosystem service provision and the potential long-term 
threats to food security and human health (Landis, 2017; Marselle et al., 
2021). 

1.2. Functional diversity overview 

With increasing evidence that major ecosystem functions and ser-
vices positively correlate with classical taxonomic diversity, e.g. species 
richness (for definition Box 1) (Soliveres et al., 2016; Walde et al., 2021), 
the focus of conservation approaches on species richness received 
considerable support also with respect to public health (Kilpatrick et al., 
2017). However, taxonomic diversity does not directly influence 

ecosystem services (for definition see Box 1) and human well-being. 
Diversity effects are indirect and mediated by the functions that eco-
systems provide and that are correlated with different aspects of di-
versity. For instance, there is growing evidence that increasing 
taxonomic diversity does not necessarily enhance the simultaneous 
provision of multiple ecosystem functions and services (Birkhofer et al., 
2018; Gagic et al., 2015; Muneret et al., 2019; Meyer et al., 2018). 
Therefore, purely taxonomic definitions of biodiversity are most likely 
not sufficient to understand the relationships between ecological rich-
ness and ecosystem functioning (Birkhofer et al., 2021; Lachat et al., 
2018). Instead, alternative aspects of biodiversity should be considered 
and may be superior to taxonomic classification in terms of their 
importance for the provision of ecosystem services (Díaz et al., 2011). In 
an attempt to understand the role of biodiversity in terms of ecosystem 
functioning and regulating ecosystem services (e.g. pests and diseases 
control, soil formation, nutrient cycling and pollination), ecologists use 
the functional trait concept focusing on the contribution of species to 
ecosystem functions or services and human health based on the richness 
and composition of traits in local biotic communities (Díaz et al., 2011; 
Lachat et al., 2018; Wood et al., 2015) (see Table 1 for mechanistic in-
sights between traits and ecological processes). By definition, functional 
traits are attributes of an organism that influence ecosystem properties 
via links to the functions performed by an organism (Hooper et al., 2005; 
Violle et al., 2007). As such, a functional trait may determine the 
response of an organism to external stressors (then called response trait), 
and the effect of a trait on ecosystem processes or services (then called 
effect trait) (de Bello et al., 2010). The expression of functional traits 
varies among and within species as a result of genetic and phenotypic 
variation in response to adaptive processes related to both evolutionary 
history and the environmental conditions (Reich, 2014). Such an 
approach offers a more mechanistic link between biodiversity and 
ecosystem multidimensionality considering ecosystem health and 
ecosystem services (Cadotte et al., 2011). Thus, by understanding the 
effects of agricultural intensification on functional diversity (hereafter 
FD, for definition see Box 1) and their consequences for ecosystem 
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health and the provision of ecosystem services, we could identify stra-
tegies to conciliate commodity production with human well-being. 

1.3. Aims and objectives 

Rendón et al. (2019) and Marselle et al. (2021) outlined potential 
positive effects of ecosystem functioning on human health in recent 
conceptual papers. The eminent Dasgupta report (Dasgupta, 2021) 
focused on the economic value of natural diversity, partly including 
health issues. However, these schemes treated biodiversity as a coherent 
concept based on taxonomic richness, without differentiating between 
the many aspects of diversity. Particularly, these frameworks do not 
address the relative effects of taxonomic diversity and FD on ecosystem 
services and human well-being. The initial hypothesis that higher di-
versity improves human well-being is frequently assumed by single 
dependency links that build causal chains, but as we show in a previous 
study (Ulrich et al., 2023), these chains can be more complex. In turn, 
agroecosystems are artificial ecosystems created or determined by 
human activities in which ecosystem functioning acts in complex way 
resulting from human manipulations intermingled with natural 
ecological processes (Barot et al., 2017; Duru et al., 2015). This context 
does not enable a clear understanding of how human health is influ-
enced by the change in different aspects of biodiversity in agro-
ecosystems, such as FD. The question of whether FD positively correlates 
with the various aspects of ecosystem functioning is still controversial, 
despite strong claims in favour of this argument (e.g. Balvanera et al., 
2006; Bastian, 2013, but see Sullivan et al., 2017 or Uyttenbroeck et al., 
2017 for contrasting results). It remains unclear, for example, if 

taxonomic and FD decline equally in response to major drivers and if 
these two aspects of diversity are generally related (Birkhofer et al., 
2015), as well as the level of FD necessary to optimize the regulating 
ecosystem services (Gardarin et al., 2021; Uyttenbroeck et al., 2017). 
Further, the complex interplay among FD and human health and their 
potential pathways also remains understudied. The framework of FD has 
originally been mostly applied to understand its relationship with 
ecosystem functions and services, but it has much rarely been used to 
make more refined decisions about ecosystem management and the 
underlying practices. Consequently, a key research need is to disen-
tangle the specific causal pathways through which FD affects human 
health, in order to facilitate cross-sector management and research 
integration on FD conservation and public health. 

In our previous work (Ulrich et al., 2023), we proposed a conceptual 
framework that links different aspects of biodiversity and human well- 
being and outlined the analytical methodology that lets us compare in a 
comprehensive and consistent way the links among biodiversity and 
human well-being provided by different ecosystems. However, the lack 
of mechanistic understanding of pathways linking different aspects of 
FD to human health may limit the application of nature-based solutions 
in public health (Marselle et al., 2021). In this article, we summarise the 
evidence linking the individual pathways of this conceptual framework 
(Fig. 1) by referring to selected published case studies including proxi-
mate and ultimate causes of issues related to human health. Specifically, 
we aim to highlight potential effects of land-use change and ecological 
intensification on the FD of plant and animal communities, the resulting 
consequences for ecosystem services and agroecosystem health and ul-
timately impacts on one specific aspect of human well-being, namely 

Table 1 
Overview of selected examples demonstrating mechanistic links between functional traits and ecosystem services across major taxonomic groups.  

Group of 
interest 

Functional trait Ecological mechanism Ecosystem services References 

Microbes Functional metabolic 
groups 

Microbes are classified by their enzyme activities, which mobilize 
specific compounds (i.e. nutrients or heavy metals) 

Nutrient cycling, biomass 
production & soil and water 
purification 

Bahram et al., 2018, Escalas 
et al., 2019 (Review), Xu et al., 
2008     

N uptake types Functional differences between soil microbes species with regard 
to N uptake: fixation vs denitrification 

Nutrient cycling & biomass 
production 

Levy-Booth et al., 2014, Nielsen 
et al., 2011 (Review)     

Fungal groups Different fungal groups may produce specific enzymes that target 
only a subset of available substrates 

Nutrient cycling & biomass 
production 

Andrino et al., 2021, McGuire 
et al., 2010 

Plants Repellent traits (i.e. 
chemical compounds) 

Secondary metabolites which defense against pathogens and 
herbivores 

Pest & pathogens control Finch and Collier, 2000, Kim 
et al., 2006     

Attractive flower traits 
(i.e. Nectar access, 
colour) 

Morphological and chemical characteristics related with the 
access to resources that pollinators and pests’ natural enemies 
need (i.e. alternative prey, refuge, or additional food) 

Pest control & pollination Bauer et al., 2017, Bianchi and 
Wäckers, 2008, Quispe et al., 
2017     

Specific leaf area Morphological trait related with photosynthetic rate and plant 
nutrient acquisition and productivity which determines the 
quality of the litter produced 

Decomposition rate, nutrient 
cycling and biomass 
production 

de la Riva et al., 2019, Santiago, 
2007, Poorter and De Jong, 1999     

Root symbiotic 
association type 

The type of symbiotic associations in plants (i.e. rhizobium or 
arbuscular mycorrhization) determines the acquisition and 
mobilization of specific nutrients compounds 

Nutrient cycling & biomass 
production 

Bulgarelli et al., 2013 (Review),  
Tedersoo and Bahram, 2019 
(Review) 

Animals Body size Body length determines both the per capita foraging rates and 
diversity and type of food resources that animals use 

Pollination and pest control Perović et al., 2018 (Review),  
Howlett et al., 2011,  
Perez-Alvarez et al., 2021     

Hairiness index Differences in the density and distribution of hairs on pollen 
feeding insects likely reflects processes such as the grain 
deposition on stigmas or feeding behaviour 

Pollination Stavert et al., 2016, Thorp, 2000     

Tongue or proboscis 
length 

Mouth morphology determines the flower foraging efficiency and 
the feed preference 

Pollination Bartomeus et al., 2018, Goulson 
et al., 2008     

Feeding groups Feeding preference determines the relationship between predators 
and prey. For instance, generalist omnivorous predators control 
pests that infest crops later in the growing season 

Pest control Eschweiler et al., 2019, Kromp, 
1999 (Review)  
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human health (for definitions see Box 1). We expect that this conceptual 
framework indicating the causal pathways through which FD influences 
human health in agroecosystems should help to organize and guide 
policy makers interventions, including natural practices that entail FD 
management for human health. Finally, we pointed out the knowledge 
gaps about certain aspects of our conceptual framework, and proposed 

priority tracks of research to increase the general validity of the 
framework and the accuracy of conclusions. 

2. Method / framework precursor 

As we previously exposed, there is a growing recognition of the 

Box 1 
Glossary and definition of main labels shown in the diagram (Fig. 1). 

Taxonomic diversity, the diversity centred around species (species richness) and compositional variability. Traditional diversity indices, such 
as Simpson or Shannon, which summarise the information on the relative abundances or the presence of species within a community without 
regard to their function (Ricotta and Avena, 2003). 

Functional diversity (FD) measures the number or diversity of functionally disparate species, individuals or properties of a community. FD 
metrics are an integrative way to understand ecosystem interactions both at the species and functional level, because functional traits by 
definition reflect the performance of organisms in the environment. That is, the interpretation of individual species and biotic communities as 
assemblages of such traits in terms of their FD is reshaping how biodiversity is measured and interpreted. It is assessed through a variety of 
indices (Mammola et al., 2021), each focusing on a different aspect of FD, as an important explanatory and predictive variable in understanding 
the interplay between community structure and ecosystem functioning (Young and Collier, 2009). 

Ecosystem services, the direct and indirect benefits that human beings obtain from ecosystems (MEA, 2005), being a useful tool to illustrate 
and communicate the dependence of human well-being on ecosystems (Schwilch et al., 2016). We recognize two major groups of services: (I) 
marketable services, which provide economic benefits and products from the ecosystems, including food, fibre, fuel, land, water, medicinal, 
biochemical, genetic, and ornamental or touristic resources; and (II) non-marketed regulating services, which are benefits obtained from the 
regulation of ecosystem processes and underpin agricultural production. 

Agroecosystem health, a healthy ecosystem being stable and sustainable over time and maintaining its organisation, autonomy and resilience 
to stress. Based on the notion of ecosystem health proposed by Rapport (1989), factors harmful to agroecosystem health affect not only 
microbiota, plant or animal physiology but also ecosystem performance and functioning (for a more comprehensive overview see Döring et al., 
2012; Paetzold et al., 2010 and Rapport et al., 1998). 

Human health, according to the Word Health Organisation, “Health” refers to a state of complete physical, mental and social well-being and not 
merely the absence of disease or infirmity.  

Fig. 1. Conceptual framework with pathways linking functional diversity (FD) to human health through ecosystem services as drivers. Four main regulating 
ecosystem services are associated with functional diversity in agroecosystems, which implies that functional diversity may affect human health by both provisioning 
services and agroecosystems health. These elements in this diagram are based on the general patterns found in the literature, while the variations and strengths 
among pathways could be subject to modification by the environmental and socio-cultural context or specific idiosyncrasies of the study area. Numbers refer to the 
respective sub-headers. The analytical methodology underlying this conceptual framework is presented in Ulrich et al. (2023). 
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interconnectedness of biodiversity and human health (Assmuth et al., 
2020; Marselle et al., 2021; Rendón et al., 2019; Ulrich et al., 2023). We 
base our new framework (Fig. 1) on the biodiversity-human well-being 
conceptual framework (Ulrich et al., 2023). Note that our framework, 
here, is more specific and targeted than the previous approach by 
focusing on one aspect of the diversity system (sensu Ulrich et al., 2023) 
– functional diversity. We emphasise that the capacity of provision of 
services is determined by a feedback loop between the state of the 
functional diversity and agroecosystem health, being the ultimate causes 
of this feedback loop directly traced back by the anthropogenic impact 
over the FD. 

The first version of the proposed FD-human well-being framework 
was generated and discussed during a workshop carried out in June 
2021 with an international panel of experts from different disciplines, 
including functional ecology in plants, arthropods and pollinators, 
ecosystems services, soil diversity, human health and statistics. This 
article summarizes the discussions that consider the evidence linking FD 
to human well-being from an interdisciplinary standpoint, focusing on 
the mediating pathways. Accordingly with this discussion, the concep-
tual model (Fig. 1) underlying our framework shows how FD indirectly 
influences human health through a cascade of pathways arranged in 
many facets of ecosystem functioning. We first identify four intertwined 
groups of functional diversity that are very relevant for agroecosystem 
functioning and document the impact of agricultural intensification on 
these groups. We conceptualize the anthropogenic influence over the FD 
of these groups in agroecosystems and their specific impact over the 
regulating services lead by them. This enables us to track the chain re-
action flows that impact the agroecosystem health and the provision of 
ecosystem benefits, and their respective links with human well-being. 
After the first meeting, each member of the consortium made its own 
review and proposed the literature to exemplify each specific aspect of 
the conceptual framework in the text, in accordance with his/her field of 
expertise. The guideline for all experts was (I) to focus mostly on current 
literature (38% of the references are from the last 5 years and 66% from 
the last decade); and as each specific pathway has been already devel-
oped in previous reviews and synthesis articles, (II) to focus on these 
works (42% of the references), as well as meta-analyses and global 
studies (10% of the references), in order to summarise all these infor-
mation. After completing the literature review (275 articles in total), the 
final conceptual framework was generated during a second workshop in 
March 2022. 

3. Conceptual framework 

3.1. Drivers of functional diversity in agroecosystem 

Agricultural intensification has exponentially increased in the last 
decades (FAO, 2018), resulting in a homogenization of landscapes 
through field enlargement, expansion of crop areas, simplification of 
crop rotations and, loss and fragmentation of semi-natural habitats 
(Foley et al., 2011; Newbold et al., 2015; Evans et al., 2016). Landscape 
homogenization together with the intensification of local farming 
practices such as higher use of chemical inputs (both for plant protection 
and soil fertilization) are recognized as key drivers of losses of FD 
(Banerjee et al., 2019; Birkhofer et al., 2017; Flores-Rentería et al., 
2016). While most of the studies on landscape homogenization have 
focused on individual taxonomic groups (e.g. invertebrates, Feng et al., 
2021) or certain interactions between them (e.g. plant-invertebrate in-
teractions, Gardarin et al., 2021), FD offers a pathway towards inte-
grating multiple communities and functions ranging from 
microorganisms to animals. Although we are still far from understand-
ing how environmental changes affect the complex interactions among 
multiple trophic levels and the consequences of these changes on FD, it 
seems evident that intensive agricultural management impacts most 
organisms and ecosystem functions (Gossner et al., 2016). Below we 
describe four major taxonomic groups that are very relevant for 

agroecosystem functioning and document the impact of agricultural 
intensification on these groups.  

a) Drivers and soil microbial functional diversity 

The functional structure of soil microbial communities (both di-
versity and composition) determines the balance of mineralization and 
assimilation processes and the quality of organic matter in soils (Bane-
rjee et al., 2016, 2019). Populations of microorganisms within a com-
munity vary in their strategies of nutrient-acquisition and can be 
classified into different trophic groups and functionally distinct niches 
(Schimel and Schaeffer, 2012). This differentiation allows them to co- 
exist and provide different ecosystem functions (Barrios, 2007). 
Although agricultural intensification may not always affect overall FD of 
microorganisms (Wang et al., 2006), microorganisms do not exist in 
isolation but depend on complex associated networks (Banerjee et al., 
2019; Karimi et al., 2019). Therefore, agricultural intensification may 
initiate a cascade of impacts on the FD at different levels of soil food 
webs. Previous evidence supports, for example, that the use of pesticides 
and fertilisers under conventional management alters the functional 
structure of microbial communities (Table 2). However, information on 
the effects of fertiliser and pesticide application on all biochemical 
processes in soils is sparse. In addition, contrasting results have been 
observed for taxonomic and FD, depending on the persistence, concen-
tration and toxicity of the applied product, the time of exposition, its 
bioavailability and the studied taxa of microorganisms (Devi et al., 
2018; Hussain et al., 2009; Lo, 2010).  

b) Drivers and plant functional diversity 

The effects of the functional structure of plant and soil microbial 
communities on ecosystem functions, such as primary production, are 
complementary. Similar to microorganisms, plants regulate nutrient 
cycling, biomass stocks and biotic interactions. Functional heterogeneity 
of different plant groups, representing different mycorrhization and 
rhizobium types, patches of moss and lichen cushions, different growth 
forms and lifespans or onset of flowering, influences the distribution of 
all higher trophic levels (Soliveres et al., 2016). Higher plant FD, for 
example, provides an increase in ecological niches for above- and 
belowground organisms and enhances resource and refuge availability 
for animals, fungi and microbes (Banerjee et al., 2016; Tiemann et al., 
2015). The impact of agricultural intensification on plant FD is context- 
dependent (Mayfield et al., 2010), which makes it difficult to generalise 
and identify a selection of specific traits on a global scale (Díaz et al., 
2001). More recent studies support that ongoing agricultural intensifi-
cation leads to a homogenization of landscapes due to losses of non-crop 
field margins, the removal of understory vegetation in orchards, over-
grazing of grasslands and the selection of crops with specific agronomic 
attributes rather than heterogeneous trait syndromes (Gomez et al., 
2018; Landis, 2017; Milla et al., 2014; Setälä et al., 2014). These 
changes, in turn, may lead to lower levels of plant FD. For instance, it is 
generally accepted that agricultural intensification affects a large subset 
of plant traits, triggering a functional homogenization through strong 
filtering (see Table 2).  

c) Drivers and animal functional diversity 

Vegetation and soil management affect the structure of animal 
communities through altering ecological niches, availability of re-
sources and biotic interactions. Structural and functional homogeniza-
tion resulting from land-use intensification has been reported across a 
diverse range of animal taxa from different types of agroecosystems 
(Evans et al., 2015; Guerrero et al., 2011; Martins da Silva et al., 2016; 
Postma-Blaauw et al., 2010; Woodcock et al., 2010). For instance, land- 
use intensification results in a shift towards smaller and more specialised 
animal communities (Flynn et al., 2009; Gámez-Virués et al., 2015; 
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Postma-Blaauw et al., 2010) and with decreasing proportions of func-
tional groups in many different animal taxa and scales (see Table 2). 
These results emphasise that the loss of species due to agricultural 
intensification is not random due to the fact that functionally unique 
species are lost more rapidly and frequently than functionally redundant 
species (Flynn et al., 2009; Tscharntke et al., 2005). In contrast, higher 
habitat diversity in agricultural landscapes (e.g. with the increase of 
semi-natural patches and plant species richness) may buffer the negative 
effects of local agricultural intensification on FD, due to the provision of 
suitable foraging and nesting resources and by favouring food web in-
teractions (Fahrig et al., 2015; Goulnik et al., 2020; Kennedy et al., 
2013). In addition, larger areas with semi-natural and natural patches in 
agricultural landscapes not only favour FD by supporting additional 
species but may also increase the carrying capacity for larger species and 
specialised feeders with requirements for larger foraging distance 
(Barbaro and Van Halder, 2009; Gámez-Virués et al., 2015; Greenleaf 
et al., 2007). However, at smaller spatial scales, a slight increase in FD 
through the use of flowering strips on field margin, has been proved 
beneficial for insect communities (Balzan et al., 2016; Uyttenbroeck 

et al., 2017). Therefore, a certain level of compositional heterogeneity is 
required in agricultural landscapes to provide insurance for functional 
traits diversity (Benjamin et al., 2014; Fahrig et al., 2015; Gámez-Virués 
et al., 2015).  

d) Drivers and crop functional diversity 

Farming practices have a long history of incorporating functional 
crop diversity in both time and space with the rotation of crops being a 
common practice (Bullock, 1992). However, polyculture practices have 
been primarily developed with a focus on productivity and economic 
benefits, often not being motivated by ecological benefits. As a result, 
during the last decades, both crop diversity and the overall balance of 
crop and non-crop habitats in the landscape tended to become more 
homogeneous (MacDonald et al., 2013; Tscharntke et al., 2005). These 
changes reduced the FD of large agricultural areas to the benefit of very 
few annual crops (e.g. corn, soybean and wheat; Landis, 2017). In the 
global food security context, an increase in the FD of crops is becoming a 
central issue to meet human demands for the long-term sustainability of 

Table 2 
Overview of selected examples demonstrating links between agricultural intensification and functional diversity across major taxonomic groups.  

Group of 
interest 

Results References 

Microbes Agricultural intensification reduces key taxa, fungal network connectivity, and increses functional 
redundancy. 

Banerjee et al., 2016, 2019   

Larger-sized soil biota are more sensitive to agricultural intensification than smaller-sized ones. Postma-Blaauw et al., 2010   

Pesticides have adverse effects on certain groups of microorganisms by reducing competition. It depletes 
microbial diversity and increases FD of microbial communities with the appearance of new soil 
enzymatic activities. 

Devi et al., 2018 (Review)   

Fertilization reduces microbial FD and decreases microbial activity in paddy fields. Li et al., 2007, Shen et al., 2008   

Long-term fertilization changes arbuscular mycorrhizal fungal community structure and decrease species 
diversity. 

Wang et al., 2011 

Plants Land-use intensification causes dramatic declines in plant FD and reduces the number of plant species in 
each functional group at global scale. 

Laliberte et al., 2010   

Higher livestock grazing shifts the functional structure of plant communities promoting functional 
redundancy in grasslands. 

Sasaki et al., 2009, Rahmanian et al., 2019   

Grazing intensification reduces the FD of Mediterranean seminatural grasslands and of biocrust 
communities (in concert with aridity) in Australia. 

Carmona et al., 2012, Mallen-Cooper et al., 2018   

Goats grazing promotes functional convergence and the establishment of exotics plants in Chile. Salgado-Luarte et al., 2019   

Increasing land-use intensity decreases floral diversity in temperate grasslands from Germany. Binkenstein et al., 2013 
Animals Floral FD promotes functional divergence and interaction frequency of pollinators while agricultural 

intensivication and insecticides result in the loss of bee species with specific functional traits. 
Williams et al., 2010, Brittain and Potts, 2011 (Review),  
Goulnik et al., 2020   

Agricultural intensification reduces the number of trophic groups and impairs the food web structure of 
soil organisms such as nematods at the global scale. 

Puissant et al., 2021   

Larger animals are more likely to be affected by agricultural intensification than smaller ones and 
increasing management intensity in agricultural grasslands reduces the number of less mobile 
arthropods. 

Postma-Blaauw et al., 2010, Birkhofer et al., 2017   

Local land use intensivication and landscape homogenization has advers effects on different trophic 
levels, reduces FD of various arthropod groups and changes trophic interactions in e.g. spiders. 

Barbaro and Van Halder, 2009, Woodcock et al., 2010,  
Birkhofer et al., 2013, Evans et al., 2015   

Land use conversion and intensivication promotes less specialised bird communities and reduces FD of 
birds in various agricultural and agroforest ecosystems around the globe. 

Barbaro and Van Halder, 2009, Flynn et al., 2009,  
Guerrero et al., 2011, Sekercioglu, 2012 

Crops Evolution in high-resource agricultural environments select for phenotypes that are larger and more 
aggressive competitors for light than their wild progenitors. 

Milla et al., 2014   

Domestication involves trait convergence, such as increased size (particularly of the harvested organ), 
loss of dispersal mechanisms, change in plant habit and loss of seed dormancy, which constitute the so- 
called domestication syndrome. 

Pickersgill, 2018 (Review)   

Domestication promotes crops with overall lower defense traits and nutritional quality than wild 
relatives, increasing their herbivore vulnerability. 

Fernandez et al., 2021, Chen et al., 2015 (Review)  
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agricultural production. Thus, diversification strategies not only include 
the diversification of landscapes, but also address the promotion of crop 
genetic diversity, crop rotation schemes and intercropping practices 
(Isbell et al., 2017). Recent research suggests that the diversification of 
agroecosystems provides multiple benefits, for instance, polycultures 
with different functional group combinations simultaneously favour soil 
fertility, productivity and crop health (Franco et al., 2017; Isbell et al., 
2017; Lazarova et al., 2021; Smith et al., 2008; Wortman et al., 2012). 
Similarly, greater FD through genetic diversification may simulta-
neously ensure crop health and resistance to environmental hazards 
(Hajjar et al., 2008). The use of cover crops, unharvested crops planted 
in rotation between cash crops, is another way to increase the FD in 
arable fields, which enhances crop health without fundamentally 
changing other aspects of agricultural management (Finney and Kaye, 
2017). 

3.2. Functional diversity and regulating ecosystem services 

Functional diversity provides a mechanistic link between taxonomic 
diversity and ecosystem functioning with significant implications for 
agroecosystems (Petchey and Gaston, 2006). Thus, FD potentially pro-
vides a partial to complete substitute for many expensive agricultural 
practices, such as pesticide and fertiliser application or substitute for 
natural pollination (e.g. transport of honey bee hives or hand- 
pollination of crops; Bommarco et al., 2013; Tittonell, 2014). Despite 
the huge effort of the research community in the last decades to un-
derstand the role of FD for the provision of ecosystem services, our 
understanding of specific aspects of FD that are relevant to agro-
ecosystems remains limited or is not implemented (Kleijn et al., 2019), 
often due to economic constraints. The common perception in studies 
focusing on ecosystem services is that agricultural practices which are 
beneficial for one ecosystem service might lead to trade-offs (or syn-
ergies) that decrease (or increase) the values of other ecosystem services 
(Birkhofer et al., 2015; Raudsepp-Hearne et al., 2010). Previous studies 
documented a direct relationship between regulating and provisioning 
ecosystem services (e.g. Birkhofer et al., 2021). However, they do not 
shed light on the causal pathways through which FD is essential to 
maintain provisioning ecosystem services in the long term and the costly 
agricultural inputs that farmers must supply to compensate the loss of 
regulating ecosystem services. Below we provide a brief overview 
considering the links between major agricultural practises and the four 
main regulating ecosystem services associated with functional diversity 
in agroecosystems (namely, nutrient cycling, pest control, pollination 
and disease and pathogen control).  

a) Functional diversity, soil structure and nutrient cycling 

The functional structure of soil biota and plant communities plays a 
key role in agroecosystems (Banerjee et al., 2019). Both components are 
of pivotal importance for organic nutrient cycling, organic matter 
decomposition, soil aggregate stabilisation and symbiotic interactions 
(Bender et al., 2016; Christel et al., 2021; Delgado-Baquerizo et al., 
2021; De Vries et al., 2013). For instance, detritivorous animals and 
saprotrophic fungi contribute to soil structure formation and organic 
matter decomposition, while soil predators regulate nutrient flows from 
one trophic group to another and also make nutrients available for 
further processing through the entire soil food web and for plant uptake 
(e.g. Hines et al., 2015; Potapov et al., 2022). Plants and microbiota 
utilise mineralized nutrients to build up organic matter and, in a positive 
feed-back loop, promote a more fertile environment which may then 
pave the way for species in higher trophic levels. Therefore, studying the 
FD of the soil biome should not be constrained to a focus on taxonomic 
composition and soil processes, but should also address the synergistic 
effect of FD on soil processes. That is, higher FD of plants enhances soil 
functioning via effects on litter quality (Scherer-Lorenzen, 2008), 
nutrient mobility (Finlay, 2008), symbiotic relationships and food web 

diversity (Patoine et al., 2017). For instance, increasing the FD of 
compounds and resources simultaneously accelerates decomposition 
mediated by microbes (Grossman et al., 2020) and enhances detritivore 
diversity by reducing competition (Patoine et al., 2017), while higher FD 
of decomposers and detritivores causes synergistic changes in litter 
decomposition (Hättenschwiler et al., 2005). Similarly, it has been 
shown that different functional groups of plant symbionts (mycorrhizal 
fungi and rhizobium) can complement each other by mobilising 
different nutrients for plants (Bender et al., 2016). In this regard, pre-
vious evidence supports the assumption that higher levels of FD often 
have stronger effects on soil functioning than higher levels of taxonomic 
diversity (e.g. species richness; Nielsen et al., 2011). This indicates that a 
basic subset of organisms representing certain functional traits is 
necessary to maintain soil functioning. Beyond that level, further in-
creases in taxonomic diversity with species representing functionally 
redundant traits provides no added benefits for soil functioning (Bender 
et al., 2016). Contrary to increasing taxonomic diversity, increasing FD 
would still be beneficial for the support of the multifunctionality of soils 
in such cases (Wagg et al., 2014).  

b) Functional diversity and pest control 

Pesticides are applied to control animal, plant and microbial pests in 
contrast to biological control approaches providing a non-chemical 
alternative using natural enemies of pest organisms. Conservation bio-
logical control focuses on promoting existing populations of natural 
enemies in their habitats and a detailed understanding of how FD in 
natural enemy communities affect levels of pest control is crucial to 
understand the effects of environmental change on agroecosystem 
functioning (e.g. body size, Rusch et al., 2015). Given the complexity of 
the interactions between natural enemies and their pest prey, the net 
effect of functional diversity of natural enemies over pests is difficult to 
predict or estimate (Greenop et al., 2018). Increasing FD of plants 
through polycultures, intercropping and non-crop field borders reduces 
pest colonisation and population growth rates either by increasing niche 
availability (i.e., resource dilution through bottom-up effects) or by 
increasing the FD of natural enemies (i.e., higher top-down control) 
(Barbaro et al., 2017; Birkhofer et al., 2014; Greenop et al., 2018; 
Martinez-Salinas et al., 2016). FD of vegetation enhances critical re-
sources for predators and parasitoids, such as alternative food resources 
and refugia, increasing the FD of natural enemy communities (Isbell 
et al., 2017). Recently, Gardarin et al. (2021) has documented a 
hump-shaped effect between FD of plants and pest control (also 
observed in pollination; Balzan et al., 2016; Uyttenbroeck et al., 2017), 
because higher plant FD may lead to an increase of the trophic networks 
complexity, affecting or promoting certain target species. Despite the 
fact that the level of FD needed in agroecosystems to regulate pest 
control remains unclear, what seems evident is that agricultural inten-
sification tends to reduce the FD of trophic networks through species 
loss. Predators are unlikely to go extinct at random and ordered patterns 
of extinction reflect their sensitivity to agricultural management 
(Greenop et al., 2018). Several generalist predator species, in line with 
patterns observed in soils (see section 2.2a), survive intense manage-
ment (often so called agrobiont species; Birkhofer et al., 2013) and the 
resulting functional redundancy threatens the capacity of the ecosystem 
to provide natural pest control services due to exclusion of specialised 
predator species, which may be more effective antagonists of pests 
(Diehl et al., 2013; Straub and Snyder, 2006). The application of in-
secticides is a common substitute for reduced levels of biological pest 
control services in agricultural landscapes dominated by intensive, 
conventionally managed crop fields (Geiger et al., 2010). However, in-
secticides may destabilise biological pest control services even further, 
because the populations of many non-target predator species are often 
also negatively affected by insecticide applications (Ewald et al., 2015; 
Geiger et al., 2010). Besides non-target effects on predators, the growth 
rates of pest populations are frequently higher than those of their natural 
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enemies, resulting in a much quicker recovery from insecticide appli-
cations (Krauss et al., 2011). In addition, secondary pest outbreaks as 
well as resistance to pesticide very often emerge in such context (Rusch 
et al., 2010). Therefore, reducing pests by insecticide applications often 
works for relatively short time periods, but does not provide a sustain-
able long-term approach. Increasing FD across trophic levels is impor-
tant to provide more long-lasting pest control services. Several studies 
for example emphasise the success of push-pull planting designs, in 
which plants with repellent traits are added to crop fields to push out 
pests and plants with attractive traits are planted outside crop fields to 
pull out pests which together reduces pest damage to crops (Letourneau 
et al., 2011; Midega et al., 2015). Designing agricultural landscapes that 
promote FD of natural enemy and plant communities has a strong po-
tential to limit pest populations and reduce the use of pesticides in the 
future.  

c) Functional diversity and pollination 

Pollination by insects and animals is important for 87.5% of the 
world’s flowering plants (Ollerton et al., 2011). However, agricultural 
intensification is one of the main drivers responsible for global polli-
nator loss over the last century (Roquer-Beni et al., 2021). Agricultural 
intensification affects pollination similarly to other ecosystem services; 
through increased use of pesticides, habitat loss, landscape homogeni-
zation and stocking rates (Goulnik et al., 2020; Woodcock et al., 2017), 
thereby altering food web interactions (Fontaine et al., 2006). In this 
regard, landscape context is a key driver of pollinator abundance and 
diversity (Gámez-Virués et al., 2015; Geslin et al., 2016). For instance, 
previous evidence supports that pollinator diversity (both taxonomical 
and functional) tends to decline with landscape homogenization and 
distance to natural areas (e.g. Gámez-Virués et al., 2015; Geslin et al., 
2016; Roquer-Beni et al., 2021) which provide suitable nest habitats and 
forage resources (Kennedy et al., 2013; Martins et al., 2015). Addi-
tionally, use of commercially available pollinators in some agricultural 
systems may have implications for wild pollinators in terms of compe-
tition, disease transfer or in some cases even hybridisation (Bartomeus 
et al., 2020; Mallinger et al., 2017). Hence, agricultural practises are 
causing shifts in the FD of native pollinator populations, promoting the 
disruption of plant–pollinator interactions and destabilisation of polli-
nation success (González-Varo et al., 2013). Several studies have 
documented that higher FD of pollinator communities is more likely to 
promote pollination services, because communities with diverse traits 
provide consistent pollination success under environmentally variable 
conditions (Brittain et al., 2013; Roquer-Beni et al., 2021), compensate 
or complement for specific inadequacies of certain kinds of pollinators 
(Fontaine et al., 2006; Martins et al., 2015) and enhance stable polli-
nator visitation networks (Hass et al., 2018). Making use of this 
knowledge, communities with high FD may provide consistent pollina-
tion efficiency through spatial and temporal complementarity without 
additional needs for domestic or commercial pollinators (Hoehn et al., 
2008; Woodcock et al., 2019).  

d) Functional diversity and disease and pathogen control 

Higher FD of microbes in soil may enhance pathogen suppression by 
the presence of antagonistic bacteria (Postma et al., 2008), by control-
ling the pathogen through competition, antibiosis, parasitism, or 
enhancement of plant resistance (Duffy et al., 2003; Frey-Klett et al., 
2011; Shen et al., 2007). In this regard, functional complementarity in 
plant communities may increase disease and pathogen resistance 
because plants may respond to pathogen infestation by producing 
chemical compounds which attract beneficial microorganisms (Jousset 
et al., 2014; Yin et al., 2021). The joint negative impact of different 
diseases or pathogens may then be lower due to the presence of different 
functional groups of antagonists. Therefore, certain agricultural prac-
tices, such as rotation, tillage or organic amendments potentially 

influence disease suppressiveness through the positive effects of FD on 
soil (Cappelli et al., 2022; Janvier et al., 2007). In addition, higher plant 
FD related to genetic and phenotypic diversity promotes disease and 
pathogen resistance due to the combination of host genotype and 
ambient pathogen population characteristics (Garrett et al., 2009). 
Simplification of FD mediated by agricultural intensification will push 
biotic communities into a negative diversity-resistance feed-back loop 
leading to an overall less healthy ecosystem. For instance, the increasing 
demand in the agricultural sector for commercial pollinators not only 
results in genetic erosion in the species population and a lack of resis-
tance to infectious diseases and pathogens (Hristov et al., 2020), but also 
threatens wild bee populations worldwide due to bee viruses which 
originate from domestic honey bees (pathogen spillover: Gisder and 
Genersch, 2017; González-Varo et al., 2013). We therefore need to in-
crease our knowledge concerning the relationship between FD and 
suppressiveness for pathogens and diseases. 

3.3. Regulating ecosystem services and agroecosystem health 

As the ecosystem service concept is an anthropocentric framework, 
natural ecosystems might also provide disservices (Barot et al., 2017; 
Birkhofer et al., 2019; Gutierrez-Arellano and Mulligan, 2018). These 
include naturally occurring disease vectors, herbivorous pests in agri-
culture and forestry and species of nuisance to humans. Services and 
disservices have to be assessed in terms of trade-offs (Birkhofer et al., 
2015; Fischer et al., 2018) with the consequence that certain processes 
in natural ecosystems do not necessarily have a positive net-effect on the 
well-being of humans or domestic animals used to satisfy humans needs. 
In relation to the comprehensive concept of agroecosystem health, the 
first layer is the consideration of all harmful or positive effects associ-
ated directly with crop and livestock fitness. A second layer then refers 
to the health of the natural environment (see Box 1). Therefore, healthy 
agroecosystems are those with the capacity to maintain their functions 
and organisation in the long-term, sustaining their productivity as well 
as animal, plant and human health. A healthy agroecosystem may offset 
disservices originating from natural ecosystems with its own regulating 
ecosystem services. It is therefore not only crucial to consider trade-offs 
between ecosystem services and disservices within any ecosystem type 
for any assessment of human health, but also to consider the net services 
across ecosystem types in an agricultural landscape. However, ongoing 
agricultural intensification is based on practices that neglect the regu-
lating services from agricultural and natural ecosystems to a large extent 
and rather focus on mitigating disservices (e.g. pest control via insecti-
cide applications) or aim at replacing natural regulating services (e.g. 
pollination deficits by importing domestic bees). Agroecosystems are 
recognized as one of the most important sources for biodiversity across 
Europe (Fleurance et al., 2016), making it essential to develop and 
promote agricultural practices that prioritise ecosystem multi-
functionality as much as crop and livestock health and production (Grass 
et al., 2020). The factors that influence agroecosystem health are 
extremely complex, involving both services and disservices related to 
land-use management and environmental conditions (Ali et al., 2020). 
However, there is an increasing recognition that the improvement of 
regulating services may interactively favour soil, crop, livestock and 
wildlife health (Allan et al., 2017; Banerjee et al., 2019; Garbach et al., 
2016; Finney and Kaye, 2017; Fleurance et al., 2016; Sutter and 
Albrecht, 2016). 

In crop fields, healthy soils are fundamental to enhance plant growth 
and productivity (Janvier et al., 2007; Lehmann et al., 2020). However, 
long-term agricultural intensification deteriorates the soil quality and 
biodiversity and weakens relationships between soil biodiversity and 
ecosystem processes considerably (Birkhofer et al., 2021). In fact, soil 
fertility has declined over the last 50 years in agricultural soils along 
with an increasing intensification (Janvier et al., 2007). Nutrient 
availability may determine the suitability of crops for cultivation, with 
organic matter content as the most important parameter (Saha and 
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Bauddh, 2020). However, several traditional practices, such as me-
chanical tillage, speed up decomposition rates of organic matter and 
improve crop productivity in the short term at the expense of long-term 
sustainability (Saha and Bauddh, 2020). In contrast, agroecological 
practices that use nature-based solutions to accomplish sustainability 
may lead to several simultaneous benefits. For instance, promoting 
network complexity in microbial communities results in higher nutrient 
supply for crop plants and improved suppressiveness to soil-borne dis-
eases (e.g. Banerjee et al., 2019; Janvier et al., 2007; Tiemann et al., 
2015), while at the same time food-web complexity may enhance pest 
control by stabilising natural enemy communities (e.g. Dassou et al., 
2016; Penvern et al., 2019). 

In addition to crop fields, semi-natural grasslands are also heavily 
disturbed by agricultural intensification (Goulnik et al., 2020), resulting 
in a loss of high-nature value grasslands and a reduction of livestock 
health. Several studies report how reduced grazing intensity in semi- 
natural grasslands also benefits regulating ecosystem services by 
providing higher levels of network complexity and ecosystem multi-
functionality through improving sward heterogeneity (see the reviews of 
Dumont et al., 2019 and Sanderson et al., 2013). In turn, pasture-based 
livestock systems, more than other agroecosystems (Rodríguez-Ortega 
et al., 2014), strongly depend on and influence the interaction between 
ecosystem multifunctionality and services. For instance, Armbruster 
(2017) points out the synergies between pollinator and plant traits in 
these ecosystems. That is, plant features such as flowering height or 
colour become less diverse with agricultural intensification, negatively 
affecting the network complexity between plants and pollinators (see 
Goulnik et al., 2020 and references therein). This, in turn, triggers the 
loss of pollinator FD, related to the previous decline of plant FD (Fon-
taine et al., 2006). In addition, ecosystem disservices from agro-
ecosystems together with the ongoing climate change impair the 
immune system of livestock species, affecting their distribution, growth, 
reproductive health and susceptibility to diseases (see review Ali et al., 
2020). Improved ecosystem complexity may, on the other hand, 
enhance benefits for both wildlife and livestock health through higher 
detoxification services and quantity and quality of mineral and protein 
nutrition (Fleurance et al., 2016; Pirhofer-Walzl et al., 2011; Villalba 
et al., 2011). In fact, complex interactions between livestock and wildlife 
species have been shown to improve forage quality for cattle through 
selective consumption of competing grass species in central Kenya 
(Odadi et al., 2011). 

Ecosystem services associated with higher network complexity and 
multifunctionality play a crucial role in the sustainability of agro-
ecosystems health (Fontaine et al., 2006). There are direct benefits from 
the provision of ecosystem services for agroecosystem health under 
sustainable agriculture (e.g. Allan et al., 2017; Bergez et al., 2022; 
Janvier et al., 2007; Torma et al., 2019; Tóth et al., 2018). The global 
human population needs sustainable and resilient agroecosystems and a 
concerted effort is needed to fundamentally redesign agricultural prac-
tises to feed the growing human population without further jeopardising 
the quality of life for future generations. 

3.4. Agroecosystem health and provisioning ecosystem services 

Agroecosystems face the challenge of maintaining provisioning ser-
vices while conserving or enhancing agroecosystem health (Rey Benayas 
and Bullock, 2012). Conventional industrialised practices are imple-
mented to supply the market, but to the detriment of agroecosystem 
health, resulting in a loss of important ecosystem functions and regu-
lating services. A major argument against alternative agricultural 
practices (e.g. organic or soil conservation farming) is that they produce 
lower yield at a time when food production has to increase substantially 
to feed the growing human population (Connor and Mínguez, 2012; 
Meemken and Qaim, 2018). However, a recent Meta-Analysis (Ponisio 
et al., 2015) showed that this yield gap is context-dependent (e.g. the 
type of alternative practices or crop), and that several studies assessing 

non-conventional agricultural practises demonstrated their ability to 
accomplish both agroecosystem health and sufficient productivity (e.g. 
Badgley et al., 2007; Garibaldi et al., 2018; Muller et al., 2017; Pittelkow 
et al., 2015; Rempelos et al., 2021; Sandhu et al., 2008). Whether 
alternative agriculture practices deliver a similar quantity of provi-
sioning services compared to conventional agriculture is still conten-
tious and context-dependent (e.g. Birkhofer et al., 2016; Chabert and 
Sarthou, 2020; Pittelkow et al., 2015; Reganold and Wachter, 2016; 
Seufert et al., 2012). In particular, these studies documented that yield 
averages range from positive to approximately 30% lower in alternative 
agriculture mainly depending on crop type (Reganold and Wachter, 
2016) and the climatic conditions (Pittelkow et al., 2015). For instance, 
under severe drought, organic yields are 70 to 90% higher than con-
ventional ones due to a better capacity to store water (Gomiero et al., 
2011). Considering these variable effects on food production is crucial to 
acknowledge the actual benefits of non-conventional practices on 
agroecosystem health and sustainability. In addition to well- 
documented lower contamination with pesticide residues and cad-
mium (Cabrera and Pastor, 2021; Classen et al., 2014; Hopkins and Holz, 
2006; Meemken and Qaim, 2018; Rembiałkowska, 2007; Rempelos 
et al., 2021), organic crops, for example, have a better nutritional pro-
file, including higher antioxidant and vitamin and mineral content 
compared to conventional crops (Barański et al., 2014). Ecosystem 
health is also enhancing the cultural value of landscapes, providing 
valuable cultural ecosystem services such as recreation and opportu-
nities for ecotourism as well as provisioning services such as hunting 
opportunities or natural medicines (Allan et al., 2017; Paudel et al., 
2021). 

Many studies have analysed trade-offs between provisioning ser-
vices, in terms of quantity, and regulating services (e.g. Landis, 2017; 
Raudsepp-Hearne et al., 2010; Rodríguez-Loinaz et al., 2015; Sanderson 
et al., 2013). However, some of these studies use a rather simplistic 
approach to measuring trade-offs. For example, by referring to cost-
–benefit analyses focusing on administrative boundaries or by quanti-
fying ecosystem functioning and services and treating them as 
independent processes, while approaches in interdependent synergies at 
small scale and along time are often ignored. Despite the value of these 
studies in terms of what services can be expected from certain land uses, 
they impede a thorough evaluation of ecosystem multifunctionality and 
services over time. The networks between ecosystems cannot be assessed 
over administrative boundaries, because many of the interactions 
among biodiversity take place at considerably smaller scales. If we then 
assume that higher network complexity and multifunctionality enhance 
provisioning services (Soliveres et al., 2016; Classen et al., 2021 and 
previous section 3.2), the main question should be: For how much longer 
will it be possible to maintain the required levels of provisioning services 
with a continuous depletion of the agroecosystem health? Agro-
ecosystems under conventional intensification practices fail to deliver 
the levels of regulating services that they require, and many of the 
agricultural practices implemented to externalise these natural regu-
lating services (i.e. commercial pollinators, synthetic fertilisers and 
pesticides) push themselves, in a negative feed-back loop, to an overall 
increase of remediation practices to compensate for the continuously 
impoverishment of the agroecosystem health (Altieri, 1999). As Rey 
Benayas and Bullock (2012) argued, agricultural management (i) should 
integrate biodiversity-based agricultural practises, (ii) has to learn from 
traditional practices, and (iii) needs to implement restoration and 
management activities that benefit regulating ecosystem services. Inte-
grating aspects of agroecosystem health and applying them to agricul-
tural practices may achieve agricultural sustainability. Alternative 
agriculture systems (e.g. organic agriculture, integrated agriculture, 
agroecological farming, ecological or sustainable intensification) have 
been proposed as sustainable alternatives to intensive conventional 
farming which relies on the use of large amounts of external inputs and 
the use of broad mechanisation. Most of these alternative systems share 
the implicit or explicit goal of increasing practices related with network 
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complexity and ecological multifunctionality that benefit from nature- 
based solutions to nutrient insufficiencies and pest infestations (Beil-
louin et al., 2021). For instance, prioritising restoration approaches and 
landscape designs based on land sharing at small spatial scales will 
enhance ecosystem multifunctionality (Rey Benayas and Bullock, 2012; 
Landis, 2017). In addition, promoting agroecological practices such as 
spatial and temporal diversification of crops, diverse rotation systems, 
conservation tillage, promotion of semi-natural habitats, and ap-
proaches for natural fertilization (e.g. green manure) and natural control 
of pests and diseases will contribute to more sustainable future agri-
culture (see reviews by Duru et al., 2015; Hatt et al., 2016 and Landis, 
2017). 

3.5. Provisioning ecosystem services and human health 

Agroecosystems underpin functions and services that are essential 
for human health. In the current global trade system and the current 
trend for higher animal food demand in the context of the ongoing di-
etary transition in some regions, an increase in food production for 
humans will be necessary to meet the demand (Clark et al., 2018; Foley 
et al., 2011; Willett et al., 2019). To address this short-term challenge, 
agriculture also needs to consider environmental concerns to guarantee 
human well-being and food security in the long term. Even if we lack a 
comprehensive framework that explains the causal pathways by which 
agroecosystem health influences human health, we still have sufficient 
evidence to support that both health components are closely linked. The 
short-term vision of immediate provision supports the conventional 
practices to fulfil important aspects of human well-being, such as food 
security and economic profits. However, as we have shown throughout 
the text, multiple pathways act together simultaneously, with synergies 
and trade-offs (Marselle et al., 2021). As such, it is important to consider 
the economic value of non-marketed ecosystem services improved by 
agroecosystem health (Chabert and Sarthou, 2020), because regulating 
services could exceed the current global costs of external inputs (Sandhu 
et al., 2015). For instance, the contribution of insect pollination to the 
economic value of the world agricultural output amounted to €153 
billion in 2005 (Gallai et al., 2009). 

Eco-friendly agricultural practices, including organic farming as a 
very common approach, are a basic claim for consumers, which perceive 
organic products as healthier than conventional ones (Feil et al., 2020). 
There is a clear upward trend in the consumption of organic products in 
Western countries (Feil et al., 2020; Röös et al., 2018), but demand still 
strongly depends on social context (Dimitri and Dettmann, 2012; 
Hansmann et al., 2020). Food quality is directly linked to human health 
(Mie et al., 2017), understanding quality both as the amounts of nutri-
ents and the lower concentration of chemical contaminants, such as 
pesticide residues and heavy metals (Hansmann et al., 2020). Over 
exposure to pesticides have been documented in observational studies 
accounting for level of organic food consumption (Baudry et al., 2019; 
Cabrera and Pastor, 2021; Hyland et al., 2019). Thresholds for accept-
able daily intake levels of chemical compounds are frequently reached in 
food products (Lam et al., 2017). In fact, the EFSA has reported residues 
above the threshold required by the Maximum Residue Levels in 2.8% of 
the products from conventional farming (Mie et al., 2017), while a study 
carried out in 26 farms from Philippines showed that 20% of the egg-
plants were tested positive for insecticide residues (Del Prado-Lu, 2015). 
Reviews carried out by Mie et al. (2017) and Benton and Bailey (2019) 
pointed out some benefits of organic over conventional food consump-
tion for human health, such as the reduction in risk of obesity and 
certain chronic diseases or the reduction in the risk of pre-eclampsia or 
eczema for infants due to higher concentrations of “healthy” fatty acids 
in breast milk. In this regard, the APP (American Academy of Pediatrics) 
reported that an organic diet reduces exposure to pesticides for children 
(Reganold and Wachter, 2016). The pesticide exposure for consumers is 
one of the problems, but the risks in the health of farm workers and rural 
population due to pesticide direct exposure is often overlooked (see the 

review of Lam et al., 2017). In addition, pesticide exposure of consumers 
through pesticide-contaminated food intake is understudied while food 
is the main source of exposure in the general population (Mie et al., 
2017). In conventional practices, increased exposure to pesticides has 
short- and long-term health effects, such as eye and skin irritation, 
dizziness, cough, muscle pains, headaches, nausea or even cancer (Elahi 
et al., 2019; Del Prado-Lu, 2015; Kim et al., 2017; Mostafalou and 
Abdollahi, 2017; Tariq et al., 2007). Therefore, collateral human health 
damages from disruption of agroecosystem services must be taken into 
account to evaluate farming systems, focusing also on agroecosystem 
and human health rather than only productivity. 

Agricultural intensification is also a major driver of global environ-
mental change and biotic degradation (Wyckhuys et al., 2020), which 
might reduce human health by induced soil, air, and water concentra-
tions of mutagens and pathogens, threats with devastating conse-
quences, such as the Covid 19 pandemic (IPBES, 2020). A large 
literature on ecotoxicology has revealed critical levels of soil (FAO, 
2021), water (UNESCO, 2009) and air pollutants (WHO, 2016) or her-
bicide concentrations (FAO, 2016), which resulted in respective inter-
national restrictions, such as those contained in the Directives of the 
European Commission. For instance, specific contaminants (e.g. heavy 
metals, persistent pesticides now banned) can accumulate in soils, reach 
surface water including drinking water and transfer into the food chain 
(Kumar et al., 2019; Lam et al., 2017). Moreover, air contaminants 
associated to agricultural intensification, derived from the denitrifica-
tion process of nitrogen fertilisers (ammonium nitrate and nitric acid) 
and methane from livestock enteric fermentation and rice cultivation 
(Weldeslassie et al., 2018), are global threats for human health (Gian-
nakis et al., 2019; Pozzer et al., 2017); because air contaminants are 
accumulating much faster than their removal and transported over long 
distances (see more details of chemical pollution in Weldeslassie et al., 
2018). 

Characteristics and well-being of human cultures are strongly asso-
ciated with the features of agroecosystems with a positive feedback in 
both directions (Paudel et al., 2021). Traditional ecological knowledge 
related to socio-cultural activities from rural areas ensure agro-
ecosystem health worldwide (e.g. Boafo et al., 2016; Janvier et al., 2007; 
Jaryan et al., 2010; Holt, 2005; McNeely and Schroth, 2006), while 
agroecosystems provide valuable cultural services that people enjoy for 
outdoor recreation, physical activity, education, ecotourism, hunting 
and use for religious ceremonies or popular festivals, providing also 
revenue for landowners and government agencies (Paudel et al., 2021). 
Therefore, a systemic approach from a more holistic valuation of agro-
ecosystem services and the underlying functional diversity is necessary 
by including human well-being aspects as key factors of agroecosystem 
performance, which may also help to ensure food security and human 
health under threats of climate change and agricultural intensification 
(Marselle et al., 2021). 

4. Conclusions and perspectives 

Agricultural intensification affects the functional diversity of biotic 
communities and the sustainability of agriculture, which puts agro-
ecosystem health in peril and threatens future human needs. The 
multitude of effects by which functional diversity affects ecosystem 
health necessitates a holistic view. By understanding the effects of 
agricultural intensification on functional diversity in agroecosystems 
and the consequences for the provision of ecosystem services and 
ecosystem health, we should contribute to future conservation strategies 
that simultaneously enhance benefits for nature, human health as well as 
agroecosystem sustainability. We provide a concept to explore alterna-
tive management practices that support agroecosystem multi-
functionality, which can enhance ecosystem services and agroecosystem 
health in a comprehensive manner. Furthermore, we propose a first 
conceptual framework to encompass the large complexity of the agro-
ecosystem and the different aspects of functional diversity, which 
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provides key operational knowledge for policy makers to guide the 
implementation of ecological intensification while preserving a 
competitive and healthy food production sector. However, further steps 
should focus to fill the knowledge gaps of themes that should be 
consolidated to encompass FD metrics as relevant indicators for diag-
nosing the agroecosystem health:  

• As we noticed, not only the impact of agricultural intensification on 
FD is context-dependent, but also it is difficult to generalise and 
identify a selection of specific traits on a global scale, which com-
plicates the development of standardized protocols for measuring FD 
as an operational tool for management.  

• Our understanding of specific aspects of FD that are relevant to 
agroecosystems remains limited, because the complexity of the in-
teractions between organisms blurs the estimation of the net effect of 
FD. Therefore, the level of FD needed in agroecosystems to regulate 
ecosystem services in the long term remains unclear. 

• Alternative practices may increase network complexity and ecolog-
ical multifunctionality. However, the effect of one agricultural 
practice cannot be isolated from the effect of the combined practices 
because of synergistic effects, which cascades effects on ecosystem 
services-disservices in a complex way. Therefore, the manipulation 
of an agroecosystem to maximize or forecast the provisioning of all 
types of services is still challenging. In any case, this requires a sys-
tem approach; like the approaches implemented by agronomists 
working on the design of innovative cropping systems (Lechenet 
et al., 2016). 

• Ecological intensification and associated regulatory ecosystem ser-
vices can result in considerably lower yields compared to conven-
tional practices. Higher land consumption to meet food demands 
under alternative agricultural practices might in turn threaten 
functionally diverse semi-natural habitats in the surrounding. 
Therefore, a key challenge is to find the optimal balance between 
land sharing vs. land sparing to maximize sustainability, as well as, 
ecosystem and human health. 

Although this review brings conclusions on the role of functional 
diversity on human well-being, further knowledge following the 
implementation of the lines of research listed above will increase the 
development of functional diversity metrics such as operational tools for 
agricultural policies. 
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Méndez, N., Rollin, O., 2018. Complementarity and synergisms among ecosystem 
services supporting crop yield. Glob. Food Sec. 17, 38–47. https://doi.org/10.1016/ 
j.gfs.2018.03.006. 

Garrett, K.A., Zúñiga, L.N., Roncal, E., Forbes, G.A., Mundt, C.C., Su, Z., Nelson, R.J., 
2009. Intraspecific functional diversity in hosts and its effect on disease risk across a 
climatic gradient. Ecol. Appl. 19 (7), 1868–1883. https://doi.org/10.1890/08- 
0942.1. 

Geiger, F., Bengtsson, J., Berendse, F., et al., 2010. Persistent negative effects of 
pesticides on biodiversity and biological control potential on European farmland. 
Basic Appl. Eco 11, 97–105. https://doi.org/10.1016/j.baae.2009.12.001. 

Gentili, S., Sigura, M., Bonesi, L., 2014. Decreased small mammals species diversity and 
increased population abundance along a gradient of agricultural intensification. 
Hystrix 25 (1), 39–44. https://doi.org/10.4404/hystrix-25.1-9246. 

Geslin, B., Oddie, M., Folschweiller, M., Legras, G., Seymour, C.L., Van Veen, F.F., 
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