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Abstract: Though the European grapevine moth, Lobesia botrana (Denis & Schiffermüller) (Lepidoptera: Tortricidae) can 
feed on more than forty plant species, grapevine is the preferred crop worldwide. This moth is a western palearctic species 
that has recently spread to Chile, Argentina, and California. The possible further expansion in other regions of the Americas 
is greatly feared and should be monitored carefully in the near future. In this framework, we provide an updated review of 
the current knowledge on its taxonomy, morphology, biology, ecology, genomics, geographic distribution, and invasive-
ness. Then, in the last section, we develop a research agenda pointing out significant challenges for future investigations on 
bio-ecology and invasion biology, which are tightly connected with the prevention and management strategies.

Keywords: pest distribution; chemical ecology; climate change; invasiveness; life cycle; morphology and taxonomy; sex 
pheromone; Tortricidae; vineyard pest

1 Introduction and history

The European grapevine moth (EGVM) Lobesia botrana 
(Denis & Schiffermüller) (Lepidoptera: Tortricidae) is 
among the most economically important pests in European 
vineyards (Bournier 1977; Ioriatti et al. 2011). The EGVM is 
a western palearctic species not reported in Scandinavia and 
northern Russia (Razowski 2003), that has recently spread 
to Chile, Argentina, and California (USA). In California 
eradication was declared in 2016 (Simmons et al. 2021a); a 
post-eradication phase is ongoing to confirm eradication or 
to detect its reintroduction.

Despite its wide host range, grapevine is the pre-
ferred crop, whereas the spurge flax Daphne gnidium L. 
(Thymelaeaceae) is the major wild host (Maher & Thiéry 
2006; Lucchi & Santini 2011).

EGVM was first described in 1775 by Denis & 
Schiffermüller, anonymously, on specimens collected near 
Vienna, Austria, and was found in Austrian vineyards for the 
first time around 1800 (Bovey 1966). It was firstly detected 
in Germany in 1854, then causing heavy damage in the 
Palatinate region in 1889 (Zschocke mentioned in Stellwaag 
1928). In a comprehensive book on grapevine pests, Audouin 
(1842) mentioned EGVM as an anecdotic pest only occur-
ring on vines. In Switzerland, according to Linder et al. 
(2016), the first damage of EGVM on vine was observed in 
1910, despite having been recorded in Valais before 1880. In 
France (Southern Alps and Bordeaux wine growing regions) 
the presence of EGVM dates to 1890 (Feytaud 1920), and 
first severe outbreaks in Bordeaux occurred in 1911 (Marchal 
1912). In Spain EGVM was first recorded in 1879, achieving 
pest status in the early 20th century (Ruiz Castro 1965).

Due to the severe impact of EGVM on grape yields, wine 
quality and the fungal toxins it may generate in warm vine-
yards, many studies have been carried out since the begin-
ning of the 20th century to gain a better knowledge on the 
moth. Notably, a 5-year scientific mission was deployed all 
over French vineyards gathering noted entomologists, such 
as Paillot, Picard, Feytaud, and Marchal (Marchal 1912; 
Feytaud 1913a, b).

EGVM presence in Italy was first suggested by Dei in 
1873 in Northern Italy, in the province of Trieste. In Trentino 

vineyards, between 1909 and 1913, EGVM populations were 
larger than those of the other common tortricid Eupoecilia 
ambiguella (Hübner) (Catoni & Schwangart 1914). The two 
species co-occurred in Piedmont as well, with alternating pre-
dominance depending on the area, though EGVM was gen-
erally considered more harmful than E. ambiguella (Voglino 
1914). Probably the alternation between the two moths may 
be explained by the different humidity requirement of each 
species (Bovey 1966). The main research available on their 
climatic preferences, as well as on their crepuscular mating 
and egg laying activity, has been carried out in Germany by 
Stellwaag and Götz (Stellwaag 1943).

Despite the long history of this important pest of grapes, 
a comprehensive synthesis is still lacking. In the present 
review, we focus on EGVM taxonomy, biology, ecology, 
and genomics, as well as on its geographic distribution and 
invasiveness. In the final section, a research agenda high-
lighting specific challenges to be faced in forthcoming stud-
ies dealing with EGVM bio-ecology and invasion biology is 
presented.

2 Taxonomy, morphology, biology, 
ecology, and genomics

2.1 Taxonomy
EGVM was first described by Denis & Schiffermüller (1775) 
as Tortrix botrana. Later, it was reported by other authors 
under different names, including Tortrix vitisana (Jacquin 
1786), Tortrix romaniana (Costa 1840), Eudemis rosmari-
nana (Millière 1866), Coccyx botrana (von Praun 1869), 
Polychrosis botrana (Ragonot 1894), and Polychrosis 
botrana flavosquamella (Dufrane 1960). A complete list of 
other scientific names together with international and local 
common names is given in Torres-Vila (2000). Today, this 
species belongs to the genus Lobesia, which includes more 
than 110 species worldwide (Gilligan, 2022), some of which 
with several synonyms. At present, three synonyms have 
been defined for EGVM, i.e., L. flavosquamella, L. ros-
marinana and L. vitisana (Gilligan, 2022) and the EGVM 
mitochondrial genome has been fully described (Piper et al. 
2016).

262    Giovanni Benelli et al.



2.2 Morphology

2.2.1 Adult
EGVM adults are about 6 mm long at rest, with a wingspan of 
11–13 mm (Bovey 1966). Adult size is mainly influenced by 
larval feeding (Torres-Vila et al. 1999). The forewings show 
a variegated marble coloration (Fig. 1A). No identification 
features are noticeable on the abdomen (Figs. 1F and 1G), 
although in females it takes a convex shape (Silvestri 1912; 
Bovey 1966). The morphology of the male’s genital valve 
plays a significant taxonomic role (Gilligan et al. 2011); they 
are relatively simple and have a well-differentiated sacculus 
and a rounded apex; the uncus is bifid, and the vinculum is 
U-shaped and strongly sclerified. In females, the last uroter-
gite ends in two lobiform expansions (anal papillae) covered 
with short, dense sensilla (Fig. 1G). The copulatory bursa is 
long, claviform, clearly bilobed at the apex and has an elon-
gated and ridged signum (Gilligan et al. 2011). In the female, 
as in many other lepidopterans, the sex pheromone gland is 
located between the VIII and IX urotergite, just beneath the 
intersegmental membrane.

2.2.2 Egg
The egg is lenticular, plano-convex and slightly elliptical in 
shape, 0.65–0.90 mm long and 0.45–0.75 mm wide (Lucchi 
2018). It is uniformly coloured over its entire surface, which 
appears almost smooth due to the polygonal lattice of the 
chorion (Silvestri 1912; Bovey 1966). The attachment of 
the egg to the substrate is ensured by a sticky substance 
secreted by the colleteric glands. Egg convexity increases 
as the embryo develops and affects the entire upper surface, 
except for the edge, which remains flat. The egg shows a pale 
straw-yellow colour when freshly laid, and then it gradually 
turns to transparent light grey with bright iridescent reflec-
tions (Fig. 1B). During embryonic development, the trans-
lucid chorion reveals the growing larva which eventually 
shows two red-spots where the head will be, while the body, 
folded upon itself, is of lighter colour than the surrounding 
yolk (Feytaud 1924) (Fig. 1C). At the end of the embryonic 
development the egg darkens on the side where the black 
head of the larva is located.

2.2.3 Larva
The newly hatched larva measures about 1 mm in length and 
shows a prognathous head, of about the same width as the 
prothorax, with the rest of the body being thinner. Thorax 
and abdomen have relatively long bristles, especially in the 
posterior region of the body. The ketotaxis of the newly 
hatched larva is identical to that of the mature larva (Hinton 
1946; Carter 1984). The head is blackish in colour, while the 
rest of the body, including the pronotum, is creamy white. 
The dermoskeleton of the dorsal and ventral surface of the 
body, except for the head and the pronotum, is rough due 
to the presence of tiny tubercles ending in short, thin bris-

tles (Silvestri 1912; Bovey 1966). The mature larva (instar 
V, sometimes VI, as noted by Pavan et al. 2013) can be 
8–15 mm long. The head is slightly elongated, hazel-brown 
in colour, sometimes green or gray, with short, retractile, tri-
articulated antennae in the anterior region of the head, with 
the second article blackish in colour (Varela et al. 2010). It 
bears a very long, marginal bristle, about 2/3 longer than 
the article itself; and the third article ends in a sub-conical 

Fig. 1. Lobesia botrana developmental stages and some distinc-
tive features: A) adult, B) newly laid egg, C) egg showing the 
black cephalic capsule of the larva, D) fifth instar larva indicating 
(withmarked through red circles) the second black antennal seg-
ment, the pale-white setiferous areas and the prothoracic scler-
ite with a brownish-black posterior margin, E) chrysalis profile,  
F) detail of the male abdomen and G) detail of the female abdo-
men showing the two anal papillae (both ventral view).
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process bearing a short bristle (Silvestri 1912; Bovey 1966). 
There are 6 ocelli on each side of the head, five arranged in 
an arc and the sixth in front of the anterior penultimate. The 
mandibles, strong and sub-pyramidal in shape, are pentaden-
tate, with the second tooth more developed outwards. Head 
capsule width (Savopoulou-Soultani et al. 1990; Delbac 
et al. 2010) as well as mandible length (Pavan et al. 2010) 
serves to discern larval stages. The jaws have a short lobe 
with four short apical sensilla and a short palpus. The pro-
thoracic scutum is brown, generally like that of the head, but 
in some cases, particularly in the third generation larvae, it 
can assume a blackish colouration, mainly in its proximal 
end (Varela et al. 2010) (Fig. 1D). The setiferous areas of the 
thorax and abdomen are significantly lighter in colour than 
the surrounding dermoskeleton. The position (ketotaxis) and 
length of thoracic and abdominal bristles, as well as those of 
the head, are of considerable systematic importance (Hinton 
1946; Carter 1984). The six legs are strong and relatively 
small. Pseudo-legs are present on abdominal urites III, IV, 
V, VI and X. All of them are short and have a crown of regu-
larly alternating hooks of different lengths which amount to 
30–40 for the pseudo-legs of urites III–VI and about 25 for 
those of urite X. The anal comb bears 6–8 teeth (Silvestri 
1912; Bovey 1966). Through the application of echoento-
mography (ultra-high frequency ultrasonography, UHFUS), 
an advanced diagnostic technology in the clinical and pre-
clinical field, the heartbeat of a 5th instar larva in a quiet state 
was reported as 55 bpm (Ricciardi et al. 2022).

2.2.4 Pupa
The pupa is obtecta (chrysalis), 4–6 mm long, slender (espe-
cially in males), with the cranial portion rounded and the 
caudal portion pointed and equipped with hooks. Female 
pupae are generally larger than male pupae. They differ from 
each other by the position of the genital sprouts, which are 
in the IX and VIII abdominal sternites in males and females, 
respectively (Lucchi 2018). The pupa is greenish at first, but 
it turns dark brown as it matures. The morphological char-
acter that allows an easy and reliable discrimination lies in 
the apex of the last abdominal segment (cremaster), which in 
EGVM ends with a fan-shaped surface and is equipped with 
8 large, hooked bristles, 4 dorsal and 4 lateral-dorsal. The 
chrysalis is contained in a fusiform, non-rigid cocoon, com-
posed of tightly packed white silky threads (Silvestri 1912; 
Bovey 1966) (Fig. 1E).

2.3 Biology and ecology

2.3.1 Host plants
EGVM is a polyphagous species whose host range includes 
more than 40 wild and cultivated plants belonging to at least 
27 botanical families (Silvestri 1912; Bovey 1966; Stoeva 
1982; Coscollá 1997; Torres-Vila 2000; Thiéry 2005; Ioriatti 
et al. 2011). Cultivated species include grapevine (Vitis vinif-
era L.), currant (Ribes uva-crispa L.), black currant (Ribes 

nigrum L.), cherry (Prunus avium L.), plum (Prunus domes-
tica L.), kaki (Diospyros kaki L.), pomegranate (Punica 
granatum L.), kiwi (Actinidia chinensis Planchon), and 
olive (Olea europea L.). EGVM cannot usually complete its 
entire annual life cycle on some of these hosts due to their 
phenology or fruit features (Stoeva 1982; Torres-Vila 2000; 
Thiéry & Moreau 2005; Torres-Vila & Rodríguez-Molina 
2013). It can develop in the laboratory on crops such as 
Medicago sativa L. (lucerne) and Solanum tuberosum L. 
(potato) (Bovey 1966), but these are rarely attacked in the 
wild (Torres-Vila 2000). Several other plants can be used for 
laboratory rearing of the larvae (e.g., apples, cherries, etc.), 
but oviposition on apples was hardly observed. The grape 
ivy, Parthenocissus tricuspidata (Siebold & Zucc.) Planch., 
has been reported as toxic for larvae (Torres-Vila et al. 1992).

EGVM colonised European vineyards coinciding his-
torically with the phylloxera crisis in the late 19th and 
early 20th centuries (Bovey 1966; Thiéry 2005; Torres-Vila 
& Rodríguez-Molina 2013). The flax-leaved daphne, D. 
gnidium L., a shrub that typically populates Mediterranean 
shrublands (Lucchi & Santini 2011; Torres-Vila & 
Rodríguez-Molina 2013), was a reported host before vine-
yard colonisation (Millière 1875), and it was proposed as 
the ancestral host from which EGVM moved to grapevines 
(Marchal 1912; Grassé 1928). Although this hypothesis was 
questioned in the past (Bovey 1966) and direct scientific evi-
dence is lacking, daphne is currently considered the native 
EGVM wild host (Maher & Thiéry 2006).

2.3.2 Life history
The biology and ecology of EGVM have been described 
elsewhere (Marchal 1912; Silvestri 1912; Stellwaag 1928; 
Bovey 1966; Roehrich & Boller 1991; Coscollá 1997; 
Torres-Vila 2000; Ioriatti et al. 2011). Main adult activi-
ties (flight, calling, mating and egg-laying) take place in 
the vicinity of dusk, although they occasionally occur at 
daybreak or at any time on cloudy days. Flight activity of 
females (based on circadian activity in the laboratory) has 
been shown to be concentrated in the 6 hrs around onset of 
scotophase (Hurtrel & Thiéry 1999). Larval diel activity 
(locomotion, feeding, pupation, etc.) has not been reported 
in the wild. However, under laboratory conditions using 
artificial diet and a simulated 1-h dusk, larvae were more 
active during the night period (Iltis et al. 2021). Adults usu-
ally do not actively disperse more than 80–100 m during 
their lifetime, and flight distances over 300 m are infrequent 
(Roehrich & Carles 1981; Schmitz et al. 1996), although 
they could cover much longer distances in passive flight if 
dragged by advective air currents (Torres-Vila et al. 2006). 
EGVM is a polyvoltine species exhibiting facultative dia-
pause. The number of generations and voltinism in a given 
area is determined by day length and temperature, acting on 
diapause induction and development rate, respectively. Short 
photophases (8–12 h long) during at least half of the egg-
larval stage induce diapause in larvae that will be later dis-
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played by pupae (Komarova 1949; Roehrich 1969; Roditakis 
& Karandinos 2001; Baumgärtner et al. 2012). In southern 
Europe, diapause induction normally occurs in the second 
half of August. The accumulated thermal integral determines 
the number of generations per year. EGVM larvae can pro-
duce supernumerary instars to ensure the best fit of the life 
cycle to diapause-inducing environmental conditions (Pavan 
et al. 2013). In Europe, EGVM usually shows two genera-
tions in the northern latitudes and three in southern temperate 
ones, although the latitudinal gradient may be locally modi-
fied by altitude, continentality or microclimatic conditions. 
The number of generations ranges from one in Romania 
to three-four in Spain, Greece, Crete, Italy, and the former 
Yugoslavia, and even five in Turkmenistan (Coscollá 1997; 
Torres-Vila 2000). The current trend is towards an increase 
in EGVM voltinism given the global warming scenario 
(Martín-Vertedor et al. 2010). When EGVM develops on 
vine, the typical trivoltine life cycle is described as follows.

The first flight of the year consists of overwintered indi-
viduals, usually starts in late March or early April and lasts 
for 4–6 weeks. Males emerge on average some days earlier 
than females (protandry) and egg laying starts 1–3 days after 
mating (pre-oviposition period depending on temperature), 
at around phenological grapevine stage 17 (Eichhorn & 
Lorenz 1977). Protandry is mostly independent from the host 
plant (Moreau et al. 2006; Thiéry et al. 2014a), however it 
was not observed in adults from larvae reared on two grape 
varieties (Cabernet Sauvignon and Red Bacco) (Thièry & 
Moreau 2005). Females of the 1st flight lay eggs on the bracts, 
flower buds and, very rarely, on the rachis of inflorescences, 
on shoots, and leaves of vine plants. The smooth surface 
of flower buds stimulates egg laying (Marchal 1912), with 
olfaction, taste and vision also playing a role (Tasin et al. 
2011a). Females lay eggs singly and more rarely in groups of 
2–3 eggs, as is typical of the subfamily Olethreutinae. Eggs 
hatch 7–10 d after oviposition (65–75°C-day, with a 10°C 
development threshold, Touzeau 1981) and go through five 
phases of embryonic development: visible embryo, visible 
eyes, visible mandibles, brown/darkened head, and black 
head (Feytaud 1924). The larva pierces the egg at one of the 
poles with the mandibles and leaves the chorion, which is 
usually not consumed and remains on the substrate. Neonate 
larvae walk for up to 24 h (depending on sun irradiation 
and temperature) in search of a suitable location to settle, 
the so-called ‘erratic stage’ (Marchal 1912). Once installed 
they drill into the flower buds, where they feed mainly on 
the staminal primordia and gynoecium. Symptoms are not 
evident at this initial stage, but about a week later individual 
larvae tie several flower buds with silk threads forming the 
so-called glomerulus (or nest), which is visible to the naked 
eye, and feed inside, relatively protected from sun irradia-
tion, desiccation, rain, or natural enemies. Larvae may build 
one to three glomeruli during their development, walking 
or ballooning to new ones, as the flowers are consumed, 
to avoid conspecific competition (Torres-Vila et al. 1997a; 

Thiéry et al. 2014b). Frass may remain adhered externally 
to the glomeruli. Fifth instar mature larvae stop feeding and 
leave the inflorescences, spinning a whitish fusiform silky 
cocoon and pupating preferentially on the leaves (Causse 
et al. 1984) or in the soil. Sexes may be identified at the 
pupal stage by the relative position of the genital primordia. 
Pupal age can be estimated from the coloration and transpar-
ency of the integument (Lalanne-Cassou 1977). When the 
adult is ready to emerge, the pupa exits the cocoon head first, 
aided by characteristic abdominal movements, dorsal spines 
and caudal hooks. The new imago excretes a greenish white 
meconium, which is usually more abundant in males than in 
females. The pupal exuvia remains attached in the cocoon in 
a position characteristic of many Tortricidae. The duration of 
the larval stage is 20–28 days and that of the pupal stage is 
12–14 days (170°C-day and 130°C-day respectively, with a 
10°C development threshold, Touzeau 1981).

In the second flight, the first adults emerge in late June 
and the females lay eggs on green berries at phenological 
stages 31–33 (Eichhorn & Lorenz 1977), usually in the most 
shaded area of grape clusters. Neonate larvae exhibit the 
same erratic locomotion behaviour as the first-generation 
larvae. Initially they feed externally on unripe berries and 
then penetrate them next to the peduncular insertion or at 
the point of contact between two berries, stimulated by their 
thigmotropism. Larval installation on shoots or leaves is rare 
(Lucchi et al. 2011). Larvae then continue their development 
boring into the grape pulp, piercing several berries sometimes 
securing them with silk threads to prevent falling off, often 
taking refuge inside an escavated berry. Scattered groups of 
attacked berries (foci) turn purple and then dark brown with 
visible frass and silk and are the clearest symptom of lar-
val damage on unripe berries. When weather conditions are 
suitable, damaged grapes may be colonised by fungal spe-
cies, including Aspergillus spp., and especially the grey rot 
Botrytis cinerea (Persoon: Fries) (teleomorph: Botryotinia 
fuckeliana Whetzel) which may cause severe qualitative 
and quantitative damage (Fermaud 1990). Larval survival 
and damage is usually higher on varieties with denser grape 
bunches because they promote both larval installation and 
fungal colonisation. Larval development in the second gen-
eration requires a greater thermal integral than in the first 
generation (255°C-day, with a 10°C development threshold, 
Touzeau 1981), due to the lower nitrogen content of grapes 
in comparison with flowers. Mature EGVM larvae pupate 
in mid-July on the bunches, on the leaves, or in the soil, fol-
lowing the same pattern of the first generation. The thermal 
integral required for pupal development is similar to that of 
the first generation.

The third flight usually starts at the end of July-early 
August. Oviposition takes place on ripening berries (around 
veraison) at phenological stages 35–37 (Eichhorn & Lorenz 
1977), and larvae develop during August and September. 
Larvae pierce the grapes more superficially than in the 
second generation, mainly feeding on the berry skin. Such 
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behaviour intensifies grey rot disease (Fermaud 1990). 
Fermentation of the sweetened dripping juice attracts vinegar 
flies (Drosophila spp.) whose larvae in turn greatly favour 
secondary attacks of bacterial acid rot. Protected by their 
shelter larvae feed on up to 2–10 nearby grapes during their 
development (Thiéry et al. 2018). The larval escape behav-
iour that typically occurs on inflorescences (body wriggling 
backwards and falling while attached to a silk thread) may 
change when they cloister inside grapes in the 2nd and 3rd gen-
erations. If harassed with a sharp object through the entrance 
hole they aggressively stick their heads out and even try to 
block the intruder with the mandibles (Torres-Vila 1995). In 
the typical trivoltine cycle, third generation diapausing lar-
vae pupate under the vine bark or in the cracks of stakes 
and wooden posts if the vineyard is trellised (Causse et al. 
1984). Prior to pupation, diapausing larvae build a cocoon 
with a stronger and more consistent silk weft than the non-
diapausing larvae (R. Roehrich, per. com.) which reinforces 
protection against dehydration and weight loss of overwin-
tering pupae, thus maintaining potential female fecundity 
(Torres-Vila et al. 1996a). Individuals overwinter as diapaus-
ing pupae from autumn until the following spring, when a 
new annual cycle begins. The diapause inhibition process, 
still not well understood, is decisively regulated by late win-
ter and early spring mean temperatures (Gabel & Roehrich 
1990).

Limited information is available on EGVM phenol-
ogy in the southern hemisphere. Dagatti & Becerra (2015) 
highlighted that in Argentina (Mendoza region) the 1st flight 
occurs in October with an average of 204.05 +/- 10.73 
degree days, the 2nd flight occurs in December with an aver-
age of 728.34 +/- 41.95 degree days, the 3rd flight occurs in 
January with an average of 1329.08 +/- 151.35 degree days, 
and the 4th flight in mid-February with an average of 1721.84 
+/- 116.63 degree days. Overall, these values are close to 
those observed in other regions of the world.

2.3.3 Environmental factors
Temperature is the main climatic variable affecting EGVM 
population dynamics, reducing or increasing adult longevity 
and developmental rate of preimaginal stages (Bovey 1966; 
Gabel 1981; Touzeau 1981). Early observations already 
reported that hot springs and droughts may dry out eggs and 
pupae, and that abundant rains and cold springs are detri-
mental to moth development (González de Andrés 1935). 
As a result of a high developmental rate at high tempera-
tures, larvae, pupae and adults are smaller, which constrains 
reproductive potential (Torres-Vila 1996; Sáenz-de-Cabezón 
et al. 2006). Oocyte development and female fecundity peak 
at around 22°C (Bergougnoux 1988). Temperatures above 
or below vital limits cause significant mortality of eggs and 
larvae (Coscollá et al. 1986; Moosavi et al. 2018) and of 
non-diapausing pupae under fluctuating temperature regimes 
(Torres-Vila et al. 1993). Diapausing pupae may withstand 
lower temperatures than non-diapausing pupae (Andreadis 

et al. 2005). Temperature-induced dormancy has been 
reported in egg and larval stages (Tzanakakis et al. 1988). 
Dusk temperature directly affects adult flight, calling, mat-
ing, and egg-laying.

Extremes in relative humidity may kill EGVM immobile 
stages, such as eggs (Götz in Bovey 1966; Coscollá et al. 
1986) and pupae (Torres-Vila et al. 1993), while larvae appear 
to be not as sensitive to humidity, perhaps due to their mobil-
ity and potential to avoid adverse conditions. High humidity 
favours the development of entomopathogenic fungi, espe-
cially on pupae. Excessive dehydration of overwintering 
pupae reduces adult reproductive potential (Torres-Vila et al. 
1996a). Relative humidity affects adult activity and longev-
ity (Marchal 1912; Bovey 1966). Pupal mortality depends 
on the interaction between temperature regime (constant vs. 
fluctuating) and relative humidity (Torres-Vila et al. 1993).

Adults need water to reach their potential reproduc-
tive output (Torres-Vila et al. 1996b; Savopoulou-Soultani 
et al. 1998) and water intake increases female remating rate 
(Torres-Vila et al. 1997b). Foliage dew may be an impor-
tant water resource for adults in the summertime. EGVM is 
typically included among the moth species requiring water 
but no sugar to maximise their reproductive output (Chauvin 
1956). However, Savopoulou-Soultani et al. (1998) report 
that sugars increase longevity and fecundity under labora-
tory conditions. Excessive wind and rainfall are detrimen-
tal to adult flight, mating and egg laying (by wetting host 
plants), and may also constrain larval performance and sur-
vival. Photoperiod triggers both diapause induction and adult 
diel activity at dusk. Longer photophases can increase female 
fecundity (Savopoulou-Soultani & Tzanakakis 1979).

Biotic factors include an array of species that interact 
with EGVM in the wild and potentially regulate its abun-
dance, occupancy, and population dynamics. Predators, 
parasitoids and entomopathogens (viruses, bacteria, fungi, 
protozoa, and nematodes) are especially important (see spe-
cific section). Tortricid moths that can coexist with EGVM, 
especially in the larval stage, include E. ambiguella (the 
cochylis), Argyrotaenia ljungiana (Thunberg) (the eulia) 
and Sparganothis pilleriana (Denis & Schiffermüller) (the 
vine pyral) (Bovey 1966). A vicariant species of EGVM, 
Paralobesia viteana (Clemens), is an important grape pest 
in easthern North America (Rufus et al. 2012). The honey-
dew moth Cryptoblabes gnidiella (Millière) (Lepidoptera: 
Pyralidae Phycitinae) is an opportunistic moth (Torres-Vila 
et al. 2002a) whose association to vine was early known 
(Feytaud 1924) and that recently became a primary pest in 
Italy (Lucchi et al. 2019).

The host plant itself may critically influences EGVM 
fitness in various ways, including larval survival and adult 
size. Host-mediated factors include host species (Thiéry 
& Moreau 2005; Torres-Vila & Rodríguez-Molina 2013), 
host-induced immune defences (Muller et al. 2015a), vine 
phenology (Savopoulou-Soultani et al. 1990; Torres-Vila 
et al. 1992; 2005; Gabel & Roehrich 1995), vine vari-
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ety (Moreau et al. 2006; Sharon et al. 2009; Thiéry et al. 
2014a; Muller et al. 2015b; Moreau et al. 2016), and spe-
cifically the phenology-mediated quality of vine reproduc-
tive organs (Torres-Vila et al. 1999). EGVM prefers grey-rot 
affected grapes (Mondy et al. 1998a; 1998b), and the fungal-
derived grape nutritional change may improve larval feed-
ing and enhance female fecundity (Savopoulou-Soultani & 
Tzanakakis 1988), although mutualism has been questioned 
(Moosavi et al. 2020). A clear link between EGVM popula-
tions and black aspergillus rot has also been demonstrated 
(Cozzi et al. 2006; Delbac & Thiéry 2016). Host influence 
on adult size strongly regulates EGVM reproductive output 
because female size positively correlates with fecundity, egg 
size and longevity, and male size with longevity and life-
time spermatophore number and size (Savopoulou-Soultani 
et al. 1990; Torres-Vila et al. 1995; 1999; Torres-Vila & 
Rodríguez-Molina 2002).

Among the rather large list of possible host plants, the 
numerous grape cultivars on which larvae grow represent an 
important source of variability. Several studies report on the 
female preferences between grape cultivars, and important 
larval or adult traits can be modified according to the grape 
cultivar on which larvae developed. Significant advances have 
been made in the last decade concerning the EGVM immune 
system, focussing on either the prophenoloxidase expres-
sion, the immune cells and the polypeptides (Vogelweith 
et al. 2011; 2016; Muller et al. 2015a). These works show 
relevant variation, as function of the cultivar on which larvae 
were fed, but also important geographical variation among 
different regions (Vogelweith et al. 2013a, b). Light was 
especially placed on the prophenoloxydase, which is key for 
encapsulation (Vogelweith et al. 2015). Encapsulation can 
be observed after parasitism by Campoplex capitator Aubert 
(Hymenoptera: Ichneumonidae) (Cerqueira de Araujo et al. 
2021) and thus variation in immunity could modify lar-
val resistance to parasitism. The host plant effect was also 
found on the offspring, eggs of females fed on different hosts 
were more or less sensitive to Trichogramma cacaoeciae 
(Marchal) (Hymenoptera: Trichogrammatidae) (Thiery & 
Desneux 2018). Grape cultivars were found to affect devel-
opment traits, e.g., male reproductive success (Muller et al. 
2015b) but also differentially the larval growth speed and the 
emergence phenology of both sexes with expected incidence 
on the sex ratio per unit of time (Thiéry et al. 2014a, b). 
Knowledge summarised above highlights the need for fur-
ther research on these issues, for a better understanding of 
the EGVM population dynamics.

Natural populations of EGVM from D. gnidium produce 
on average smaller eggs than corresponding grapevine-asso-
ciated populations when controlling for female size (Torres-
Vila et al. 2012), which shows moth adaptation to host plant 
and suggests the possibility of microspeciation, even if there 
are no host volatile detection differences between the two 
populations (Pérez-Aparicio et al. 2019). This is important 
as larger eggs produce larger neonates, which are more 

resistant to starvation and better able to settle and survive in 
adverse habitats, such as not compact unripe grape bunches 
(Torres-Vila & Rodríguez-Molina 2002). Larval host plant 
origin (Moreau et al. 2008), chemical composition of fruit 
surface (Maher & Thiéry 2004a, b), and sugar content may 
also influence female oviposition behaviour, and a specific 
fructose detector has been found on the female ovipositor 
(Maher et al. 2006).

2.3.4 Chemical ecology
Chemical communication using highly volatile molecules is 
a major route of information transfer in insects (Wyatt 2014; 
Harari & Sharon 2016; Nieri et al. 2022). Chemical infor-
mation can be transferred intentionally (i.e., pheromones) or 
unintentionally (i.e., some plant volatiles).

2.3.5 Pheromones
The sex pheromone blend of EGVM shows a main compo-
nent, (E,Z)-7,9-dodecadienyl acetate (E7,Z9-12:Ac) and at 
least four other minor compounds: (E,Z)-7,9-dodecadien-
1-ol (E7,Z9-12OH), (Z)-9-dodecenyl acetate (Z9-12:Ac), 
(E)-9-dodecenyl acetate (Z9-12:Ac), and 11- dodecenyl 
acetate (11-12:Ac) (Roelofs et al. 1973; Arn et al. 1988; 
El-Sayed et al. 1999; Witzgall et al. 2005). Only the major 
component has been detected in volatile collections from 
calling females (0.3 ± 0.1 ng/h, Anfora et al. 2005) and it 
alone is sufficient to attract males, so the role of the minor 
compounds still needs to be verified (Sans et al. 2016) though 
they could help males to locate females in air impregnated 
with the major pheromone component under mating dis-
ruption (MD) conditions (Torres-Vila et al. 1997c). E7,Z9-
12:Ac has only been identified in two other moths as a minor 
component of the blend, being the main component only in 
EGVM blend (El-Sayed 2022).

Females release the sex pheromone by adopting a charac-
teristic calling posture where wings are slightly raised, legs 
outstretched, abdomen turned downwards, distal abdominal 
segments extended and the pheromone gland protruding and 
clearly visible at the abdominal tip (Torres-Vila et al. 2002c; 
Navarro-Roldán & Gemeno 2017). Calling behaviour is 
mild at the beginning of calling, it peaks in the middle of 
the calling period and decreases gradually afterwards, with 
high variability in duration and intensity among individuals 
(Navarro-Roldán & Gemeno 2017). EGVM sexual activity 
takes place during a 2–4 hours period right before and after 
sunset (dusk), as revealed by male captures in pheromone 
traps (Lucchi et al. 2018a). The exact period of pheromone 
release by females under natural conditions probably follows 
that of male captures, but it needs to be confirmed by observ-
ing females under natural conditions. Under laboratory con-
ditions with no dusk, females emit pheromone only during 
the first 2 h of the scotophase (Navarro-Roldán & Gemeno 
2017), but if a dusk period is used between day and night, 
females start calling at dusk (Torres-Vila et al. 1997c; Anfora 
et al. 2005). This highlights the importance of mimicking 
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natural light intensity dynamics when observing periodic 
behaviours in the laboratory (Vanin et al. 2012).

Male moths detect the sex pheromone with specialized 
olfactory receptor neurons (ORNs) housed inside sensilla 
trichodea located on the antennae. Pheromone receptor 
neurons express receptor proteins tuned to the pheromone 
compounds (Dekker & Karpati 2020). Candidate genes for 
the pheromone receptors of EGVM have been identified but 
their function is not known (Rojas et al. 2018). The presence 
of a large glomerulus at the entrance of the antennal lobe of 
the male brain (Masante-Roca et al. 2005) suggests a super-
abundance of major pheromone compound ORNs on the 
antennae. This has been estimated as 50% of all the ORNs on 
the male antenna by single sensillum electrophysiology (De 
Cristofaro et al. 2008). The presence of a single macroglom-
erulus in the antennal lobe and a 100:20 to 100:5 ratio of 
major to minor compounds, respectively, in the pheromone 
blend (Sans et al. 2016) suggests that, as in other tortricids 
(Pérez-Aparicio et al. 2022), ORNs tuned to the major pher-
omone compounds are in different sensilla trichodea than 
ORNs tuned to the minor compounds.

The flight response of males to the sex pheromone has the 
characteristic zig-zagging pattern of most insects orienting 
upwind to an odour source, but in comparison to related tor-
tricid species, such as Grapholita molesta (Busck) and Cydia 
pomonella (L.) the flight of EGVM has more numerous and 
shorter zigzags, and thus it exhibits a characteristic slower 
flight with a narrower track (El-Sayed et al. 1999; Navarro-
Roldán et al. 2019).

Chemical signals may be used to indicate the presence 
of eggs on a plant so that females avoid laying their eggs in 
already occupied plants, and in so doing, reduce offspring 
competition for resources. These signals have been found in 
L. botrana, and in several other moths, and this typical ‘egg 
odour’ made of saturated and unsaturated C16–C18 fatty 
acids provoke females to disperse oviposition (Gabel et al. 
1992; Gabel & Thiéry 1996). Similar signals occur in several 
moth species (C. pomonella, G. molesta and the peach twig 
borer Anarsia lineatella Zeller (Lepidoptera: Gelechiidae)), 
and thus they are not considered as pheromones (Thiéry et al. 
1995). Interestingly, one of these compounds, the oleic acid, 
attracted a potential EGVM egg parasitoid, Trichogramma 
maidis Pintureau & Voegel in olfactometer.

2.3.6 Plant volatiles
Volatile organic compounds (VOCs) play a role in long-
range host plant recognition by EGVM (Tasin et al. 2005, 
Masante-Roca et al. 2007). VOCs acting as attractive allelo-
chemicals (kairomones) emitted by different grapevine 
organs have been identified (Masante-Roca et al. 2005; 
Tasin et al. 2005, 2010). Redundancy and synergism have 
also been demonstrated among the kairomones for egg-lay-
ing females. This plasticity, characterising several polyph-
agous moths, is probably linked to the high polyphagy of 
EGVM and thus its ability to discriminate host plants on the 

basis of the relative amount of ubiquitous plant secondary 
metabolites (Tasin et al. 2007). Such high polyphagy has 
been recently related also to the large set of odorant bind-
ing proteins and odorant receptors identified by antennal 
transcriptome and relative protein expression analysis, many 
of them putatively involved in host seeking or oviposition 
behaviour (Rojas et al. 2018). By means of electrophysi-
ological and behavioural studies using volatile compounds 
identified in D. gnidium and V. vinifera, it has been shown 
that EGVM females respond to both ubiquitous and specific 
volatile compounds, but that the complete mixture obtained 
from the wild host is more attractive (Tasin et al. 2005, 2010; 
Pérez-Aparicio et al. 2019). Interestingly, to reproduce the 
attractiveness of grapevine both under laboratory and field 
conditions, it is sufficient to use a small subset of kairomonal 
compounds represented by a specific blend of the terpenoids 
(E)-β-caryophyllene, (E)-β-farnesene and the homoterpene 
(E)-4,8-dimethyl-1,3,7-nonatriene (Anfora et al. 2009). 
Its attractiveness depends on the ratio of the compounds, 
decreasing significantly when deviating from the ratio found 
in grapevine headspace collections (Tasin et al. 2011a).

Female EGVM can discriminate between smells associ-
ated with naturally occurring microorganisms that increase 
or decrease the food quality of the host plant for the larvae, 
with attractive or repellent effects. These smells could be 
used to develop new monitoring or control systems (Mondy 
et al. 1998b; Tasin et al. 2011b, 2018; Larsson Herrera et al. 
2020). Furthermore, adults of EGVM are attracted to VOCs 
emitted by potential food sources, particularly sugars and 
nitrogenous substances. For example, fermenting apple 
juice or red wine were used as a food bait to trap EGVM 
adults and to predict field oviposition dynamics (Thiéry et al. 
2006a; Bagnoli et al. 2013).

Short-range volatile stimuli and mechanical stimuli are 
used by gravid EGVM females for oviposition site selection. 
Indeed, grape berry extracts of V. vinifera and leaf and berry 
extract from D. gnidium were found to trigger dose-depen-
dent oviposition in EGVM females (Maher & Thiéry 2004a, 
b; Maher & Thiéry 2006). The response varied according to 
the phenological stage and to the plant part considered, and 
tarsal contact-chemoreceptor sensilla sensitive to fructose 
and sucrose are involved (Maher et al. 2006). On the other 
hand, one may argue that EGVM is attracted by a wide num-
ber of grape cultivars, and we are still far from understand-
ing what the minimal blend of VOCS attractive to females 
is. VOCs emission also varies considerably as a function of 
soil, rootstock, plant vigour, droughtiness and climate. This 
outlines that, besides VOCs, other cues are exploited by ovi-
positing females.

Regarding the role of non-host plants, EGVM detects 
the terpenes produced by tansy, Tanacetum vulgare L. 
(Asteraceae) (Gabel 1992). Furthermore, the effect of a sin-
gle compound, (S)-(−)-perillaldehyde, a volatile emitted by 
Perilla frutescens (L.) (Lamiaceae), promotes oviposition by 
EGVM (Cattaneo et al. 2014; Markheiser et al. 2020). It has 
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been hypothesised that not only antennal olfactory receptors, 
but also gustatory sensory structures located on the oviposi-
tor may be involved in this behaviour. In contrast, essential 
oil extracted from another non-host plant, Schinus molle L. 
(Anacardiaceae), deters oviposition (Silva et al. 2019).

Another modern research field deals with HIPVs (host 
induced plant volatiles), which are emitted by vines dam-
aged by pests. Phenylacetonitrile, for example, is an HIPV 
that has been shown to be attractive to males and females 
of EGVM (El-Sayed et al. 2019). HIPVs could signal the 
presence of plants that are more susceptible to attacks by 
herbivorous insects than undamaged plants, thus provid-
ing an evolutionary advantage for those pests that are able 
to perceive them. Moreover, they could also be exploited as 
kairomones by various insect predators (Lucchi et al. 2017).

The employment of these allelochemicals in the vine-
yard can be hampered by their competition with background 
odours, by the difficulty in formulating right doses and mix-
tures, and by the production cost of these new synthetic 
compounds. Nevertheless, new biotechnological tools can 
facilitate and accelerate the use of the allelochemicals on a 
large scale. For example, recently stable grapevine transgenic 
lines, obtained via Agrobacterium tumefaciens technology, 
with altered (E)-β-caryophyllene and (E)-β-farnesene emis-
sion compared to original unmodified plants have been gen-
erated (Salvagnin et al. 2016; 2018). It has been shown that 
modification of the kairomone ratio within the grape bouquet 
is sufficient to interfere with the host-seeking behaviour of 
EGVM, making the transgenic plants less attractive to the 
female moths in wind tunnel experiments. This finding could 
form the basis for the development of new environmentally 
friendly approaches for pest control, also exploiting the new 
plant genome editing such as the CRISPR–Cas9 system 
and its subsequent developments (Anzalone et al. 2019). 
Relatively few studies have explored the response of larvae 
to chemical stimuli. Becher & Guerin (2009) demonstrated 
the orientation of starved larvae with a locomotor compensa-
tor to the odour of artificial diet and eight plant volatiles, like 
methyl salicylate which was sensed with a threshold of 1 ng 
load on filter paper. Calas et al. (2006) showed that larvae 
avoid feeding on 20-hydroxyecdysone and that they taste it 
with the lateral sensilla styloconica of the galea. Interestingly, 
adult females avoid ovipositing on surfaces treated with this 
compound, which is normally inside the plant tissues, and 
detect it with gustatory receptor neurons located on the tarsal 
sensilla (Calas et al. 2006).

2.3.7 Sexual behaviour
In many moth species, including tortricids, the adults emerge 
with sufficient nutrition to mate and lay eggs and do not need 
to ingest additional food sources (Wäckers et al. 2007). 
However, the attraction of EGVM to fermentation volatiles 
could indicate the search for carbohydrate sources. Although 
females mate and lay fertile eggs without any food intake 
(besides water), sugars intake has a positive impact on female 

fecundity and longevity (Savopoulou-Soultani et al. 1998). 
In the wild, females have been observed visiting Tanacetum 
vulgare flowers, where they probably feed (Gabel 1992), but 
EGVM has a relatively short proboscis and is probably not a 
nectar-dependent species. Larval nutrition strongly impacts 
adult reproductive output (Torres-Vila et al. 1999; Muller 
et al. 2015a, b; Moreau et al. 2016).

There is evidence that sex pheromones provide informa-
tion about the physical condition of the calling (pheromone 
releasing) female (see review by Harari & Steinitz 2013; 
Gonzalez-Karlsson et al. 2021). EGVM’s sex pheromone is 
condition-dependent, with larger females producing more 
pheromone than smaller ones, especially more of the main 
pheromone component. Based on the female emitted phero-
mone characteristics, males prefer larger females (Harari 
et al. 2011), which are more fecund than smaller females 
(Torres-Vila et al. 1999; Harari et al. 2011). EGVM female 
responds to mating disruption doses of their own pheromone 
in the field by competitively increasing their rate of phero-
mone emission (Harari et al. 2015). This may affect their 
longevity and reproductive potential as repeated calling is 
costly (Harari et al. 2011). Alternatively, since females are 
relatively anosmic to their own sex pheromone, especially 
towards the minor pheromone components (Vitagliano et al. 
2005; Pérez-Aparicio et al. 2019), the observed response to 
mating disruption concentrations of sex pheromone may 
not be due to a pheromone autodetection sensu stricto 
(Holdcraft et al. 2016) but to the consequence of mislead-
ing odour stimulation (Pérez-Aparicio et al. 2022). In either 
case, the implications of changes in female behaviour under 
mating disruption deserve further study (Pérez-Aparicio 
et al. 2022).

The mating system of EGVM is primarily monandrous, 
with 70–100% of females mating only once in their lifetime 
both in the field (Roehrich & Smitz 1992; Torres-Vila et al. 
2005, 2019) and in the laboratory (Deseo et al. 1981; Torres-
Vila et al. 1997b, 2002c, 2019; Dodi-Zelberzvig & Harari 
2019). Female remating in EGVM has heritable variation, 
involving at least two autosomal recessive genes (Torres-Vila 
et al. 2002c). Remating is also affected by male and female 
physiological conditions, such as female size and the volume 
of the spermatophore provided by males (Torres-Vila et al. 
1997b: see also Torres-Vila & Jennions 2005). Female size 
positively correlates with grape phenology; females origi-
nating from larvae fed in the larval stage on inflorescences 
are smaller than females fed on ripe grapes, whereas those 
fed on unripe grapes are of an intermediate size (Torres-Vila 
et al. 1999). Accordingly, the rate of polyandry increases 
with female size throughout the season (Torres-Vila et al. 
2005). Spermatophore volume is positively correlated with 
male size (Sadeh & Harari 2015) and his remating history 
(Torres-Vila et al. 1995). Peculiar attention should be paid 
to intraspecific variation among females in their propensity 
to remate, as it implies a true behavioural polymorphism 
(Torres-Vila 2013).
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Mate choice experiments, using lab-reared monandrous 
and polyandrous lines, revealed that males are more attracted 
to volatiles of calling virgin females over those of polyan-
drous females that have mated once (Dodi-Zelberzvig & 
Harari 2019). Calling in EGVM females is costly and affects 
female fecundity (Harari et al. 2011). Hence, the repeated 
calling of polyandrous females results in reduced fecundity 
and longevity (Dodi-Zelberzvig & Harari 2019). Males of 
polyandrous lines have more apyrene (i.e., non-fertilizing) 
sperm than males of the monandrous lines. Thus, they are 
better equipped for sperm competition if females remate. 
However, the higher number of apyrene sperm in the polyan-
drous lines has been associated with shorter male longevity 
(Dodi-Zelberzvig & Harari 2019).

In general, EGVM females prefer to mate with males 
providing larger spermatophores (Sadeh & Harari 2015), 
since small spermatophores may negatively affect female 
fecundity (Muller et al. 2016; but see Torres-Vila et al. 
1995). When given a choice, monandrous females discrimi-
nate against experienced males having much smaller sper-
matophores (Muller et al. 2016). The cues involved in mate 
choice are not known. EGVM displays no obvious or elabo-
rate courtship behaviour, and no courtship pheromone has 
been described for this species.

EGVM females are proovigenic and lay about 20–40% 
of their eggs on the first days after mating, then egg pro-
duction progressively decreases with age (Torres-Vila et al. 
1995, 1999; Thiéry et al. 2014a). Thus, as females mate once 
per night, increasing the time between matings may allow a 
limited reproductive outcome for additional males waiting to 
mate (Sadeh & Harari 2015). Usually, females mating with 
an uncompetitive male tend to delay oviposition for a chance 
to mate with a more competitive male in terms of fitness. To 
date, this attitude was not detected in EGVM females (Sadeh 
& Harari 2015) probably for two reasons; on the one hand, 
the energetic cost to attract another male mate is too high 
given that the production and release of pheromones requires 
a lot of resources from females (Harari et al. 2011; Steinitz 
et al. 2015), on the other hand, delayed mating negatively 
affects the fecundity of females, as older females are less 
fecund (Torres-Vila et al. 2002b).

2.4 Genomics
Despite its importance as a pest in viticulture, there is cur-
rently no annotated genome resource for EGVM and only a 
few genes have been sequenced and characterised to date. 
The draft complete mitochondrial genome with a size of 
15,229 bp is available in GenBank under reference sequence 
NC_029193.1 and is identical to KP677508.1 from an indi-
vidual sampled in France (Piper et al. 2016). The EGVM 
antennal transcriptome has been analysed and a set of olfac-
tory-related genes (odorant-binding proteins and odorant 
receptors) were identified and further characterised (Rojas 
et al. 2018; Venthur et al. 2019). Recently, the transcrip-
tome of EGVM female pheromone glands was sequenced 

and 41 candidate genes that may be involved in sex phero-
mone production were identified (Ding et al. 2021). Nguyen 
et al. (2013) have shown that in line with other members of 
the tortricid subfamilies, Olethreutinae and Tortricinae, the 
EGVM sex chromosome arose by fusion between an ances-
tral chromosome and an autosome. It may have increased the 
adaptive potential of tortricid moths and contributed to their 
spread and subsequent speciation. This study also provided 
partial sequences of EGVM orthologs of the Ace-1, EF-1α, 
mago, and Notch genes. For population genetics studies, a 
set of microsatellite markers was developed to characterise 
genetic diversity in populations of EGVM from Europe and 
the Middle East (Reineke et al. 2015).These markers allow 
identifying two ancestral genetic clusters underpinning the 
European and Asian populations, with substantial introgres-
sion between these two genetic clusters detected in a popula-
tion from Germany.

A fully annotated EGVM reference genome will assist in 
the identification of genes involved in adaptation and specia-
tion, as well as in chemical communication between popu-
lations. Population genomic studies will also benefit from 
having a reference genome of the target pest to better under-
stand invasion biology (Pearce et al. 2017; Tay et al. 2022). 
As a first step, a draft genome based on short-read Illumina 
data has been generated that will contribute to characterisa-
tion of resistance genes, and understanding of EGVM inva-
sion history in the South and the North Americas (i.e., Chile, 
Argentina, and USA) and therefore contribute to its future 
biosecurity preparedness (Pandey et al. 2022). EGVM popu-
lations from Chile and USA representing the pest’s recent 
invasive range expansion were analysed using multiple 
mtDNA genes (partial COI, partial Cyt b) and compared 
with native Europe (i.e., Portugal, Spain, Italy, Germany, 
Switzerland, Greece) and Asia (i.e., Israel, Turkey, Syria) 
populations (Tay 2016). Complete mitochondrial genomes 
(Tay 2016; Piper et al. 2016) identified the likely presence 
of a minor cryptic species in the EGVM populations. Two-
genes (i.e., mtCOI, Cyt b) mtDNA signatures identified three 
haplotypes in 17 individuals from the Chile invasive popu-
lation. 17 of 18 USA EGVM individuals also were charac-
terised by a haplotype signature (i.e., haplotype 18,11) that 
was present in most of the European EGVM populations. 
Interestingly, one Chilean EGVM individual (collected ca. 
41 km north of Santiago) shared this USA EGVM haplotype, 
while one USA EGVM had a unique (i.e., 02,22) haplotype 
not found elsewhere, suggesting that both USA and Chile 
incursions involved multiple founders and potentially mul-
tiple independent introductions.

3 Distribution and invasiveness

Current records indicate that EGVM is widespread and 
abundant in much of Western Europe, Hungary, Bulgaria, 
and Cyprus. It is locally abundant in parts of Tunisia, and has 
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few records in the United Kingdom. EGVM is considered 
to be present in surrounding countries in these regions, but 
without a clear indication of its relative abundance (CABI 
2022).

While broadly Western Palearctic in origin (CABI 2022), 
given the patterns of early EGVM detections, Maher & 
Thiéry (2006) posit that it may have initially originated along 
the Mediterranean and then subsequently spread to Central 
and Western Europe. Additionally, EGVM has proven to 
be invasive outside of this region. For example, it has been 
recorded in parts of East Africa, specifically Eritrea, Ethiopia, 
and Kenya; surely as the result of human introduction (CABI/
EPPO 2012; CABI 2022). It was also reported in parts of 
Japan (Bae & Komai 1991), however those reports may stem 
from a misidentification of another species (EPPO 2022). 
More recently, EGVM has been introduced into grape-grow-
ing regions of the Americas. In South America, this moth spe-
cies was first detected in Chile in 2008, and is now considered 
widespread, and it was confirmed in the Mendoza region 
of Argentina in 2010, after which it spread more broadly 
throughout the country (González 2010; Ioriatti et al. 2012; 
CABI 2022). In North America, EGVM was first detected 
in the western United States, in Napa County, California, 
in 2009 (Varela et al. 2010; Simmons et al. 2021a). It later 
spread to other areas of California, prior to being declared 
eradicated by 2016 (Simmons et al. 2021a). Comparisons of 
Chilean and U.S. populations of EGVM to those from select 
areas of Europe and the Middle East indicate that the geno-
types from invaded areas are most closely related to popu-
lations in Spain and France, indicating a likely introduction 
from Western Europe (Middleton 2011).

A handful of studies have used various approaches to 
assess the potential invasive range of EGVM. A risk assess-
ment that characterised effects of habitat type and crop acre-
age, among other variables, estimated that nearly 30% of the 
continental U.S. may be suitable for EGVM (Venette et al. 
2003). High risk areas included major grape-growing regions 
in Central and Northern California, as well as grape and 
other fruit-growing areas of northern Oregon (Venette et al. 
2003). Another study used occurrence records from native 
and invaded regions to develop an ecological niche model 
of suitability for EGVM in China (Lv et al. 2012). Based 
largely on temperatures in the coldest part of the year and 
annual mean temperature, the results predict the highest like-
lihood of establishment in the south-eastern portion of the 
Country (Lv et al. 2012). A slightly different, physiologically 
based, modelling framework was used to project EGVM 
suitability throughout the U.S., with a focus on California 
(Gutierrez et al. 2012). This study concluded that the most 
favourable environments were in interior southern California 
and the southern Central Valley but given different warm-
ing scenarios would likely shift to more northern and coastal 
areas of the state (Gutierrez et al. 2012). The most compre-
hensive analysis used occurrence records of both EGVM 
and V. vinifera to identify those areas globally where the 

two species are likely to co-occur (Rank et al. 2020). Based 
primarily on strong effects of annual mean temperature and 
temperature variation, those areas at risk of EGVM invasion 
include coastal California, coastal and eastern Washington, 
the north-eastern U.S., central Mexico, Chile, Argentina, 
Uruguay, southern Brazil, South Africa, southern Australia, 
and south-eastern China (Rank et al. 2020).

Perhaps the best studied invasion by EGVM is the one 
in California, first noted in 2009 (Varela 2010; Simmons 
et al. 2021a). The genotypes of moths identified were most 
closely related to populations from Spain and France. The 
precise introduction pathway in this case is not known. It 
is although not clear whether EGVM was introduced in 
California directly from Western Europe or indirectly via 
Chile (Middleton 2011). After first being detected in Napa 
County in 2009 (Varela 2010), EGVM eventually spread to 
9 counties in the state, up to approximately 300 km from 
where it was first detected (Simmons et al. 2021a). Analysis 
in the most heavily invaded areas documented significant 
spatial heterogeneity in captures, with distinct clustering in 
certain locations (Schartel et al. 2019). Further investigation 
with habitat suitability models suggested that hotspots in 
EGVM activity were influenced by a combination of climate 
(i.e., temperature, precipitation), landscape features (i.e. 
elevation), and potential anthropogenic effects (i.e. distance 
to major roads and wineries; Schartel et al. 2019). Post hoc 
assessments of the eradication program that was put in place, 
attribute its ultimate success to the well-coordinated pro-
gram, with strong public and private support, coupled with 
informed decision making stemming from the integration of 
lessons learned from prior research on EGVM in its native 
range (Schartel et al. 2019).

3.1 Impact of climate change
Global climate change and in particular the overall increase 
of average temperatures will have significant impact on 
EGVM physiology, phenology, voltinism, and thus distribu-
tion ranges. Being a multivoltine species, it can be expected 
that because of higher temperatures of winter – early spring, 
EGVM adults will emerge earlier from overwintering pupae 
in spring, with the consequence of displaying an additional 
generation per year (Reineke & Thiéry 2016). Evidence for 
such an advanced phenology and increased voltinism was 
first reported in Spain (Martin-Vertedor et al. 2010) and more 
recently in Portugal (Reis et al. 2021a, b), where populations 
are showing a complete 4th additional flight. In line with this, 
modelling studies have indicated that EGVM distribution 
ranges will significantly shift northwards (Svobodova et al. 
2014). In this regard, existing population models for EGVM 
have been recently reviewed by Lessio & Alma (2021) as 
well as by Castex et al. (2020). The latter team also devel-
oped a generic model for EGVM that can be used to assess 
the impact of various climate change scenarios on the future 
geographical distribution and the putative spread to new vul-
nerable areas.
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Besides phenology and voltinism, rising temperatures 
can also affect different life history traits in insects (see also 
specific section above). Increasing temperatures reduce the 
time needed for EGVM larval development and increase sur-
vival rates as well as larval escape ability to natural enemies, 
but they decrease larval lipid reserves and prophenoloxidase 
activity (Iltis et al. 2019). Accordingly, defensive traits dis-
played by EGVM against infections, parasitoids or abiotic 
stressors will be affected by future climate change. Studies 
by Iltis et al. (2018) have shown that exposure to warmer 
conditions during larval development elicit extensive weak-
ening of several behavioural and immune defence reactions 
in EGVM larvae, which in turn could increase parasitization 
success. Higher temperatures also improve EGVM larval 
tolerance to copper fungicides through temperature-driven 
hormesis or by shifting the hormesis-related peak of perfor-
mance toward higher copper concentrations tolerated by lar-
vae under future temperatures (Iltis et al. 2022).

Besides temperature, several other climatic factors prob-
ably will change in the future, in particular the amount and 
distribution of precipitation, relative humidity and atmo-
spheric CO2 concentration. These climatic factors will affect 
all trophic levels in the vineyard ecosystem, including the 
host plant and natural enemies (Castex et al. 2018).

4 The future: challenges for bio-ecology 
research

Two and a half centuries after the EGVM description, there 
is a long and windy road towards the full understanding of 
its biology and ecology, which is tightly connected with 
pest prevention and management. Below, we propose an 
agenda formulating major aims for future research in EGVM 
bio-ecology.

A better understanding of EGVM population dynamics 
would benefit from further research on the potential effects 
of how feeding on various grape cultivars may affect EGVM 
developmental traits (Thiéry et al. 2014a, b) as well as to 
gain insights on the EGVM immune system (Vogelweith 
et al. 2011, 2015, 2016; Muller et al. 2015a). Furthermore, 
relatively scarce knowledge is currently available about 
EGVM phenology in the southern hemisphere, with a focus 
on Argentina (Dagatti & Becerra 2015). Additional research 
efforts on this issue are welcome. Furthermore, understand-
ing climate change-related effects on the trophic interac-
tions occurring among EGVM and its natural enemies 
(particularly parasitoids, Castex et al. 2018) is of pivotal 
importance.

Regarding EGVM genomics, more detailed analyses of 
the gene flow directionality of the North and South America 
introduction histories will require a whole genome sequenc-
ing approach as demonstrated in various invasive pest stud-
ies (e.g. Elfekih et al. 2018; Tay et al. 2022).

Herbivore-induced plant volatiles (HIPVs) are consid-
ered highly detectable synomones helping natural enemies 
to locate the host habitat (Kaplan 2012). Research is still 
needed to gain knowledge on the practical use of HIPVs in 
the field, the suitable release rates, and related formulations, 
as well as the possible association of HIPVs with predator 
and parasitoid sex pheromones aimed at enhancing attraction 
of natural enemies of EGVM (Lucchi et al. 2017).

Of note, the role of secondary plant constituents and 
grape vigour in the larval food has received too little atten-
tion, regarding both larval and adult fitness. This knowledge 
would help understand population dynamics on the differ-
ent grape cultivars and the sensitivity to bio-control agents 
(e.g., predators, parasitoids and entomopathogens). It would 
also provide valuable information to better understand how 
EGVM gets installed in production vineyards. A hypothesis 
could be the drastic change of grape cultivars and their bio-
chemical quality due to the phylloxera crisis (Thiéry 2005), 
cultivars being more favourable to EGVM than to the other 
tortricid pests. The intensive use of sulphur and copper as 
the only fungicide products during the beginning of the  
19th century could also be involved in the rapid extension of 
the pest. Research on the effect of sulphur and copper, for 
example on the immune systems of these Tortricidae, would 
be of interest.
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