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1  | INTRODUC TION

Interactions among organisms and with their abiotic environment 
regulate the ecological processes underlying ecosystem services 

(Mace et al., 2012). Ecological interactions among organisms (e.g., 
predation, mutualism, parasitism) at a single point in space and 
time are usually represented as a network, with the organisms as 
nodes and the interactions as links (Pocock et al., 2012). Current 
challenges focus on understanding how and why these networks 
vary in space and time (Pellissier et al., 2018; Pilosof et al., 2017), 
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Abstract
Environmental DNA contains information on the species interaction networks that 
support ecosystem functions and services. Next-generation biomonitoring proposes 
the use of this data to reconstruct ecological networks in real time and then compute 
network-level properties to assess ecosystem change. We investigated the relevance 
of this proposal by assessing: (i) the replicability of DNA-based networks in the ab-
sence of ecosystem change, and (ii) the benefits and shortcomings of community- and 
network-level properties for monitoring change. We selected crop-associated mi-
crobial networks as a case study because they support disease regulation services 
in agroecosystems and analysed their response to change in agricultural practice be-
tween organic and conventional systems. Using two statistical methods of network 
inference, we showed that network-level properties, especially β-properties, could 
detect change. Moreover, consensus networks revealed robust signals of interactions 
between the most abundant species, which differed between agricultural systems. 
These findings complemented those obtained with community-level data that showed, 
in particular, a greater microbial diversity in the organic system. The limitations of net-
work-level data included (i) the very high variability of network replicates within each 
system; (ii) the low number of network replicates per system, due to the large number 
of samples needed to build each network; and (iii) the difficulty in interpreting links of 
inferred networks. Tools and frameworks developed over the last decade to infer and 
compare microbial networks are therefore relevant to biomonitoring, provided that 
the DNA metabarcoding data sets are large enough to build many network replicates 
and progress is made to increase network replicability and interpretation.
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and which network properties should be conserved or enhanced 
to sustain ecosystem services (Montoya et al., 2012; Raimundo 
et al., 2018; Tylianakis et al., 2010). Next-generation biomonitoring 
(NGB) proposes the reconstruction, automatically and in real time, 
of ecological networks using the next-generation sequencing (NGS) 
of environmental DNA (eDNA) data, and the analysis of network and 
community variation in space and time to detect and explain changes 
in ecosystem functions and services (Baird & Hajibabaei, 2012; 
Bohan et al., 2017; Derocles et al., 2018; Makiola et al., 2020). 
However, before implementing NGB approaches on a large scale, we 
need more case studies demonstrating the utility of DNA-based net-
works and the meaning of their derived network metrics (Compson 
et al., 2019). The goal of the present study is to fill this gap.

NGB requires the reconstruction of replicated networks of eco-
logical interactions as well as the development of statistical tools 
for their comparison and analysis. Theoretical frameworks have 
been developed for the comparison of ecological networks between 
contrasted environmental conditions or along environmental gradi-
ents (Delmas et al., 2019; Pellissier et al., 2018; Poisot et al., 2012; 
Tylianakis & Morris, 2017). By analogy with the α- and β-diversity of 
ecological communities, these frameworks define α- and β-proper-
ties for ecological networks as whole-network metrics (e.g., connec-
tance) and dissimilarities between pairs of networks, respectively 
(Pellissier et al., 2018). Community- and network-level metrics can 
be used to assess the impact of environmental changes on the 
number, identity and abundance of the species forming ecological 
communities, and on the structure, type and strength of their inter-
actions, respectively. They have for instance been used to evaluate 
the impact of agricultural practices (Morriën et al., 2017)⁠, which 
are a key driver of global change (Tilman et al., 2002), on species 
diversity (Tuck et al., 2014), and on pest and disease regulation ser-
vices supported by species interactions (Ma et al., 2019; Macfadyen 
et al., 2009; Tylianakis et al., 2007).

Networks of interactions among microorganisms appear as suit-
able tools for NGB for at least three reasons: NGS techniques are the 
current rule for studying microbial communities (Bálint et al., 2016); 
microorganisms are present in all Earth ecosystems; and microbial 
interactions are crucial to ecosystem functioning, human life and 
well-being (Gilbert & Neufeld, 2014; Zhu & Penuelas, 2020). Network 
ecology, which originates from the study of trophic links between 
macroorganisms (Ings et al., 2009), initially ignored interactions with 
and among smaller organisms (Lafferty et al., 2006). However, with 
increasing evidence of the contribution of microbial interactions to 
biogeochemical cycles (Falkowski et al., 2008), plant diversity and 
productivity (van der Heijden et al., 2008), and disease regulation in 
soils (Berendsen et al., 2012), plants and animals (Brader et al., 2017; 
Hacquard et al., 2017; Vayssier-Taussat et al., 2014), microbial net-
works are now considered key to the understanding of ecosys-
tem functioning (Karimi et al., 2017; de Vries et al., 2018; Wagg 
et al., 2019). However, given that microbial networks inferred from 
eDNA data do not represent real ecological interactions among mi-
crobial species, but rather statistical associations among molecular 

units that only represent putative signals for microbial interactions 
(Faust & Raes, 2012; Röttjers & Faust, 2018; Vacher et al., 2016), it 
is crucial to evaluate the relevance of their derived properties to the 
assessment of change in ecosystem functioning.

In this study, we analysed the relevance of microbial network 
properties to NGB by assessing (i) the replicability of microbial 
networks inferred from eDNA data in the absence of ecosystem 
change, and (ii) the benefits and shortcomings of community- and 
network-level properties for detecting change. We focused on 
crop-associated microbial networks because they support disease 
regulation services in agroecosystems (Toju et al., 2018), and anal-
ysed their response to change in agricultural practice (conventional 
versus organic farming). We inferred microbial networks from eDNA 
sampled from replicated agricultural plots by using two classical 
methods of network inference, SparCC (Friedman & Alm, 2012) and 
SpIEC-EaSI (Kurtz et al., 2015). We then computed α- and β-diver-
sity metrics at the community and network level to identify the level 
that best captures change in agricultural practice, by using grape-
vine and its foliar microorganisms as the case study. These results 
are then used to discuss those tools and frameworks that are best 
adapted to NGB approaches.

2  | MATERIAL S AND METHODS

2.1 | Study site and sampling design

Grapevine leaf samples were collected on September 10, 2015, from 
an experimental vineyard (Figure 1) located near Bordeaux (INRA, 
Villenave d’Ornon, France; 44°47′32.2″N, 0°34′36.9″W). The ex-
perimental vineyard was planted in 2011 and was designed to com-
pare three cropping systems: sustainable conventional agriculture 
(CONV), organic farming (ORGA) and pesticide-free farming (RESI) 
(Delière et al., 2014). The Vitis vinifera L. cultivar Merlot noir grafted 
onto a 3309 C rootstock was used in both the CONV and ORGA 
cropping systems. Only the CONV and ORGA systems, which used 
the same cultivar but different phytosanitary treatments, were com-
pared in the present study to avoid multiplying the sources of varia-
tion between systems. RESI used a resistant cultivar, which has two 
quantitative trait loci of partial resistance to downy mildew and total 
resistance to powdery mildew. The experiment had a randomized 
block design (Schielzeth & Nakagawa, 2013) consisting of three 
blocks, each composed of three plots, one for each of the cropping 
systems tested. Each plot covered an area of 2100 m2 and was com-
posed of 20 rows of 68 vines each, with 1.60 m between rows and 
0.95 m between vines in a single row.

CONV plots were managed according to the general principles 
of integrated pest management (IPM), as listed in Appendix III of 
the 2009/128/EC Directive (European Commission, 2009). ORGA 
plots were managed according to European Council Regulation 
(EC) No. 834/2007 (European Council, 2007). ORGA plots were 
treated with copper and sulfur-based products, whereas additional 
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phytosanitary products were allowed in CONV plots (Table S1). 
The cropping systems differed in terms of the types of pesticides 
applied and the timing of applications, but not in terms of doses 
(Table S1). All products and active ingredients were applied be-
tween the end of April and mid-August of 2015. Grapes were har-
vested on September 10, 2015. The disease incidence and severity 
at harvest were higher in CONV plots than in ORGA plots for both 
powdery mildew (caused by the fungal pathogen Erysiphe necator) 
and black rot (caused by the fungal pathogen Guignardia bidwellii). 
Downy mildew symptoms (caused by the oomycete pathogen 
Plasmopara viticola) did not differ significantly between the crop-
ping systems (Table S2).

Grapevine leaves were collected in the 2 hr prior to grape har-
vest, from 20 vines per plot in the CONV and ORGA plots (Figure 1). 
We attempted to avoid edge effects by selecting the 20 vines from 
the centre of each plot. The third leaf above the grapes was col-
lected from each vine, placed in an individual bag and immediately 
transported to the laboratory. In total, 120 leaves, corresponding to 
1 leaf × 20 vines × 3 plots × 2 cropping systems, were collected. 
Leaves were processed on the day of collection, with sterilized tools 
in the sterile field of a MICROBIO electric burner (MSEI). Three con-
tiguous discs of 6 mm diameter were cut from the centre of each leaf, 
~2 cm from the midrib. They were placed in the well of a sterile DNA 
extraction plate. The leaf discs were then freeze-dried overnight 
(Alpha 1–4 DA Plus, Bioblock Scientific).

2.2 | DNA extraction and sequencing

Leaf discs (Figure 1) were ground with a single-glass ball mill 
(TissueLyser II, Qiagen) and DNA was then extracted with a CTAB 
chloroform/isoamyl alcohol (24:1) protocol. A dozen “empty” wells 
(i.e., containing just extraction reagents) were included on each 
plate as negative control samples for DNA extraction. Three of 
these negative control samples were randomly selected and pooled 
before sequencing. Three replicates of a fungal mock community, 
each consisting of an equimolar pool of DNA from 189 pure fun-
gal strains, were also included as positive control samples (Pauvert 
et al., 2019).

The nuclear ribosomal internal transcribed spacer (ITS) re-
gion, which is considered to be the universal barcode region for 
fungi (Schoch et al., 2012), was then amplified with the ITS1F 
(5′-CTTGGTCATTTAGAGGAAGTAA-3′, Gardes & Bruns, 1993) 
and ITS2 (5′-GCTGCGTTCTTCATCGATGC-3′, White et al., 1990) 
primer pair, which targets the ITS1 region. PCR was performed in an 
Eppendorf thermocycler (Eppendorf), with a reaction mixture (25 µl 
final volume) consisting of 0.04 U Taq polymerase (SilverStar DNA 
polymerase, Eurogentec), 1 × buffer, 2 mm MgCl2, 200 µm of each 
dNTP, 0.2 µm of each primer, 1 ng/µl bovine serum albumin (New 
England BioLabs) and 2 µl DNA template. A pseudo-nested PCR pro-
tocol was used, with the following cycling parameters: enzyme acti-
vation at 95°C for 2 min; 20 (1st PCR with regular primers; Table S3) 

F I G U R E  1   Experimental design. Foliar fungal communities were characterized in three conventional (CONV) and three organic (ORGA) 
vineyard plots by a metabarcoding approach. We analysed 20 foliar samples per plot. For each plot, we thus obtained 20 community profiles 
(described in terms of amplicon sequence variants (ASV)) and one association network (inferred either with the SparCC software developed 
by Friedman and Alm (2012) or with the SpIEC-EaSI software developed by Kurtz et al. (2015). More networks were then obtained by 
varying network reconstruction parameters (Figure 3). The effects of cropping system (CONV versus ORGA) on the grapevine foliar 
microbiota were assessed with both community and network α- and β-properties
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and then 15 (2nd nested PCR with pretagged primers; Table S3) cy-
cles of denaturation at 95°C for 30 s, 53°C for 30 s, 72°C for 45 s; 
and a final extension phase at 72°C for 10 min. “Empty” wells (i.e., 
containing just PCR reagents) were included on each plate as a nega-
tive control for PCR. Three negative control samples were randomly 
selected and pooled before sequencing. In addition, the PCR prod-
uct of one sample per plot was split in two, with each half of the 
sample sequenced independently to serve as technical replicates for 
sequencing, hence forming six pairs of technical replicates (one per 
plot).

We checked the quality of all the PCR products by electro-
phoresis in 2% agarose gels. A total of 123 samples were sent for 
sequencing, corresponding to 112 well-amplified leaf samples, six 
technical replicates, one pooled negative extraction control, one 
pooled negative PCR control and three mock community repli-
cates. PCR products were purified (CleanPCR, MokaScience), mul-
tiplex identifiers and sequencing adapters were added, and library 
sequencing on an Illumina MiSeq platform (version 3 chemistry, 
2 × 250 bp) and sequence demultiplexing (with exact index search) 
were performed at the Get-PlaGe sequencing facility (Toulouse, 
France).

2.3 | Bioinformatic analysis

Based on the mock community included in the sequencing run, 
we found that analysing single forward (R1) sequences with 
dada2 (Callahan et al., 2016) was a good option for fungal com-
munity characterization (Pauvert et al., 2019). This pipeline 
fully exploits the resolution of molecular barcodes (Callahan 
et al., 2016), which is a desired feature in microbial network in-
ference. Indeed, the taxonomic resolution of the nodes should 
be fine enough to discern the variation in ecological interactions 
between microbial strains (Röttjers & Faust, 2018). Using dada2 
version 1.6, we retained only R1 reads with less than one ex-
pected error (based on quality scores; Edgar & Flyvbjerg, 2015) 
that were longer than 100 bp, and we then inferred amplicon 
sequence variants (ASVs) for each sample. Chimeric sequences 
were identified by the consensus method of the removeBime-
ras function. Taxonomic assignments were performed with RDP 
classifier (Wang et al., 2007), implemented in dada2 and trained 
with the UNITE database version 7.2 (UNITE Community 2017). 
Only ASVs assigned to a fungal phylum were retained. The ASV 
table was then filtered as described by Galan et al. (2016) with 
a custom script (https://gist.github.com/cpauv ert/1ba6a 97b01 
ea6cd e4398 a8d53 1fa62f9) that removed ASVs from all samples 
for which the number of sequences was below the cross-contam-
ination threshold, defined as their maximum number in negative 
control samples. Finally, we checked the compositional similar-
ity of the six pairs of technical replicates, in terms of both ASV 
occurrence and relative abundance (Figure S1), and we removed 
for each pair of technical replicates the replicate with the lowest 

number of sequences. We also removed the controls. Therefore, 
the final ASV table contained 1,116 ASVs, 112 leaf samples and 
4,760,068 high-quality sequences.

2.4 | Statistical analyses

Statistical analyses were performed with R software version 3.4.1 
(R Core Team, 2018), with the packages lmE4 version 1.1-19 (Bates 
et al., 2015), vEgan version 2.5-5 (Oksanen et al., 2019), pErmutE ver-
sion 0.9-5 (Simpson, 2019), phyloSEq version 1.24.2 (McMurdie & 
Holmes, 2013) including the dESEq2 extension version 1.20.0 (Love 
et al., 2014), nSt version 2.0.4 (Ning et al., 2019) and Igraph ver-
sion 1.2.4.1 (Csardi & Nepusz, 2006). Data were manipulated and 
plots were created with rEShapE2 version 1.4.3, plyr version 1.8.4 
and ggplot2 version3.2.0 (Wickham, 2016), Cowplot version 0.9.4 
(Wilke, 2019), ggraph version 1.0.2 (Pedersen, 2020) and vEnndIa-
gram version 1.6.20 (Chen, 2018).

2.4.1 | Effect of cropping system on community 
α-diversity

Three community α-diversity properties were computed for each 
sample: richness, diversity and evenness of fungal communities 
(Table 1). Generalized linear mixed models (GLMMs) were then 
used to test the effect of the cropping system on these properties. 
The models included the cropping system as a fixed treatment ef-
fect and the sampling depth (defined as the total number of raw 
sequences per sample) as an offset (Bálint et al., 2015; McMurdie 
& Holmes, 2014). For every property, we compared the likelihood 
of a full model, including the block and its interaction with the 
cropping system as random effects and a simplified model, includ-
ing only the block factor as a random effect. Community rich-
ness was defined as the number of ASVs per sample. We used a 
logarithmic link function to model these count data, assuming a 
negative binomial distribution to deal with overdispersion (Zuur 
et al., 2009). Community diversity was measured with the Inverse 
Simpson index (Simpson, 1949) and modelled with a Gaussian 
distribution and the logarithmic link function. Evenness was es-
timated with Pielou's index (Pielou, 1966) and modelled with a 
Gaussian distribution and the logarithmic link function. The offset 
was transformed according to the link function. The significance 
of the fixed treatment effect was finally assessed with the Wald χ2 
test (Bolker et al., 2009). Moreover, to investigate whether foliar 
fungal pathogens of grapevine were responsible for variations in 
community α-diversity properties, we fitted the models by includ-
ing the relative abundance of sequences assigned to the genus 
Erysiphe (which includes Erysiphe necator, the causal agent of pow-
dery mildew; Armijo et al., 2016) and the genus Guignardia (which 
includes Guignardia bidwelli, the causal agent of black rot) as fixed 
additive effects.

https://gist.github.com/cpauvert/1ba6a97b01ea6cde4398a8d531fa62f9
https://gist.github.com/cpauvert/1ba6a97b01ea6cde4398a8d531fa62f9
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2.4.2 | Effect of cropping system on community 
β-diversity

Two community β-diversity properties were calculated for each 
pair of samples: the quantitative Jaccard dissimilarity and the 
binary Jaccard dissimilarity (Table 1). Permutational analyses of 
variance (PERMANOVAs; Anderson, 2001) were then used to 
evaluate the effect of the cropping system on these composi-
tional dissimilarities. The models included cropping system, sam-
pling depth (log-transformed), block and their interaction as fixed 
effects. ASVs differing in abundance between cropping systems 
were identified with dESEq2 (Love et al., 2014), by calculating the 
likelihood ratio between a full model including block and cropping 
system as fixed effects and a simplified model including only the 
block factor. The estimated fold-changes in abundance were con-
sidered significant if the p-value was below 0.05 after Benjamini 
and Hochberg adjustment. Moreover, to understand better the 

processes shaping community structure, the relative contribu-
tion of deterministic and stochastic processes in community as-
sembly was assessed by following the framework defined by Ning 
et al. (2019). This method provides statistics for each sample, 
named the Normalized Stochasticity Ratio (NST), which ranges 
from 0 to 100, where 0 indicates a completely deterministic as-
sembly process and 100 a completely stochastic assembly pro-
cess. NST was calculated using the tNST function with the binary 
and quantitative Jaccard dissimilarity indices, the FE null model, 
and other parameters as default. We used the FE null model (SIM2 
in Gotelli, 2000) because it is the most appropriate for compar-
ing standardized samples that have been collected in areas of ho-
mogeneous habitat, such as vineyards. This null model reshuffles 
ASV occurrences among samples by considering that all samples 
are equally probable. NST values were calculated for each crop-
ping system and then compared using PERMANOVA with the nst.
panova function.

TA B L E  1   List of community-level and network-level α- and β-properties analysed in the study

Property Definition Reference
Number of 
observations CS

Community α-properties

Richness Total number of amplicon sequence variants (ASVs) — N = 112 Y

Diversity (Inverse Simpson) Effective number of ASVs Simpson (1949) N = 112 Y

Evenness (Pielou's J’) Evenness in ASV relative abundance Pielou (1966) N = 112 Y

Community β-properties

Compositional dissimilarity 
(binary Jaccard)

Dissimilarity of composition due to ASV turnover Jaccard (1990) S = 6,216 Y

Compositional dissimilarity 
(quantitative Jaccard)

Dissimilarity of composition due to variations in ASV 
relative abundance

Chao et al. (2006) S = 6,216 Y

Network α-properties

Number of links (L) Total number of links – N = 6 N

Connectance (C) Fraction of the total number of possible links actually 
realized

Coleman & Moré (1983) N = 6 N

Number of connected 
components (CC)

Number of groups of nodes connected together Martinez (1992) N = 6 N

Diameter (DIA) The longest of all the shortest paths between two 
nodes

Barabási et al. (2000) N = 6 N

Mean node degree (DEG) Mean number of links per node Martinez (1992) N = 6 N

Proportion of negative links 
(NLR)

Proportion of links for which the SparCC correlation 
is negative

Faust and Raes (2012) N = 6 N

Network β-properties

Topological dissimilarity 
(Schieber's D)

Dissimilarity of global and local network structure Schieber et al. (2017) S = 15 N

Association dissimilarity (βWN) Overall dissimilarity of associations Poisot et al. (2012) S = 15 Y

Association dissimilarity (βOS) Dissimilarity of associations between shared ASVs Poisot, Canard, Mouquet, 
et al. (2012))

S = 15 Y

Association dissimilarity (βST) Dissimilarity of associations due to ASV turnover Poisot, Canard, Mouquet, 
et al. (2012))

S = 15 N

Note: The number of independent observations (N) and the size of corresponding dissimilarity matrices (S) are indicated. The last column indicates if 
the property varied significantly (Yes/No) with change in the cropping system (CS).
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2.4.3 | Network inference

Fungal association networks were inferred at the plot level (Figure 1) 
with two widely used methods of microbial network inference: the 
SparCC algorithm (Friedman & Alm, 2012) implemented in faStSpar 
(Watts et al., 2019) with default SparCC values; and the SpIEC-EaSI 
method (Kurtz et al., 2015) using the MB procedure of edge selec-
tion. Both methods try to deal with the compositional nature of 
metabarcoding data. In a metabarcoding data set, the total number 
of sequences per sample is arbitrary, imposed by the sequencer. 
Sequence counts contain only relative abundance information 
for species. Methods that do not take this feature into account 
can result in the identification of artifactual associations (Gloor 
et al., 2017). Both SparCC (Friedman & Alm, 2012) and SpIEC-EaSI 
(Kurtz et al., 2015) attempt to overcome this bias using log ratios 
of counts. For each method of network inference, 10 networks per 
plot were constructed by varying the percentage P of the ASVs in-
cluded in the network (with P ranging from 10% to 100% of the most 
abundant ASVs in the plot). We varied P because we expected that 
it would influence the replicability of the networks. We expected, 
in particular, the networks built from only the most abundant ASVs 
to be more replicable. For the same reason, networks were also in-
ferred after aggregating ASVs at the genus level and removing ASVs 
that were not taxonomically assigned at this level. In all cases, the in-
ferred microbial networks had ASVs as nodes and a positive or nega-
tive link between ASVs in cases of significant associations between 
abundance.

2.4.4 | Effect of cropping system on network 
α-properties

Six network α-properties were calculated for each inferred network: 
number of links, network density, number of connected compo-
nents, diameter of the largest component, mean node degree and 
proportion of negative links (Table 1). The effect of the cropping sys-
tem on these properties was investigated by performing Wilcoxon 
rank-sum tests for all values of P. The Benjamini–Hochberg proce-
dure was used to correct p-values for multiple testing.

2.4.5 | Effect of cropping system on network 
β-properties

Four network β-properties were calculated for each pair of inferred 
networks (Table 1). The topological distance between networks 
was calculated with the D index defined by Schieber et al. (2017). 
Schieber's D, when applied to binary networks (i.e., with unweighted 
links), captures global and local structural dissimilarities between 
networks, by comparing node connectivity patterns across scales. 
The dissimilarity of associations between networks, βWN, according 
to the framework described by Poisot, Canard, Mouillot, et al. (2012), 
was then calculated for all pairs of networks with the binary Jaccard 

dissimilarity index. βWN was then partitioned into two components 
(Poisot, Canard, Mouillot, et al., 2012): the dissimilarity of associa-
tions between ASVs common to both networks (βOS) and the dis-
similarity of associations due to species turnover (βST). In contrast to 
Shieber's D index that evaluates how nodes are connected to neigh-
bouring nodes and to more distant nodes, these three metrics com-
pare lists of pairwise associations between nodes. PERMANOVA 
was used to evaluate the effect of the cropping system on the topo-
logical distance between networks (D) and the dissimilarity of asso-
ciations between networks (βWN, βST and βOS). The models included 
cropping system, the percentage of ASVs, P and their interactions as 
fixed effects. The permutations (n = 999) were constrained within 
blocks. Finally, for each network inference method and every value 
of P, consensus networks containing only the shared associations 
between the three network replicates within a cropping system 
were built to identify robust associations that could indicate eco-
logical interactions between fungal strains. The number of shared 
associations between the three network replicates was compared 
to those obtained between three random networks simulated with 
the same nodes and the same number of links. The significance of 
shared associations was evaluated with a pseudo p-value, estimated 
from 999 simulations and defined as the probability that the three 
random networks shared more associations than the three inferred 
networks (Morlon et al., 2014).

3  | RESULTS

Among the 15 community- and network-level properties computed 
(Table 1), seven indicated differences between the organic (ORGA) 
and the conventional (CONV) system.

3.1 | All community α-properties detected 
system change

All three community α-diversity properties—richness, diversity 
and evenness (Table 1)—were significantly higher in ORGA than 
CONV plots (Figure 2a–c; Table S4). Community richness, for ex-
ample, equalled on average 39.69 fungal ASVs per sample in ORGA 
plots versus 36.40 in CONV plots, with each sample representing 
0.85 cm2 of a single leaf tissue. Including the interaction between 
the cropping system and the block did not significantly increase the 
likelihood reported by the GLMMs, indicating that changes in com-
munity α-diversity properties due to the cropping system were con-
sistent across blocks.

In contrast to our expectations, none of the community α-di-
versity properties was influenced by pathogen relative abundance 
(Table S5). Pathogen abundance within each sample was estimated 
as the proportion of sequences assigned to the genus Erysiphe and 
ranged between 0% and 36.34%, with an average of 1.12% per sam-
ple. No ASV was assigned to the genus Guignardia and this variable 
was therefore not included in the models.
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3.2 | All community β-properties detected 
system change

The two community β-diversity properties analysed in this study—
the quantitative and binary Jaccard indices (Table 1)—detected sig-
nificant differences in community composition between systems 
(Table 2). The cropping system was a major driver of both ASV rela-
tive abundance (Figure 2d) and ASV presence–absence (Figure 2e), 
as indicated by the quantitative and binary Jaccard indices, respec-
tively. It explained 7.6% of the variance in ASV relative abundance 
and 4.5% of the variance in ASV presence–absence (Table 2). The 
block effect was also significant, indicating that there were spatial 
variations in community composition at the scale of the experiment. 
The block explained 4.3% of the variance in ASV relative abundance, 
and 2.6% of the variance in ASV presence–absence (Table 2). There 
were also large differences in composition among samples within a 

plot, as indicated by the high percentage of unexplained variance 
(78.2% for the quantitative Jaccard index and 85.7% for the binary 
Jaccard index) (Table 2).

In line with these results, we found that the stochasticity in ASV 
presence–absence was very high in both the ORGA and the CONV 
systems (NST = 78.4% and 94.8%, respectively). Nevertheless, 
it decreased markedly when the relative abundance of ASVs 
(NST = 29.3% and 33.6%, respectively) was taken into account 
(Table S6), probably because the ASV, assigned to Aureobasidium 
sp. (Table 3) was the most abundant, represented more than half 
of the total number of sequences and was highly abundant in all 
samples. Stochasticity in ASV presence–absence was significantly 
higher in CONV plots (Table S6). A similar trend, although non-
significant, was observed for ASV relative abundance, suggesting 
that communities in ORGA plots were more stable, in addition to 
being richer (Figure 2a).

F I G U R E  2   Effect of cropping system—conventional (CONV) versus organic (ORGA)—on the α-diversity and β-diversity metrics of 
grapevine foliar fungal communities. (a) Community richness, defined as the number of ASVs. (b) Community diversity, measured with the 
inverse Simpson index. (c) Community evenness, measured with Pielou's index. Differences in α-diversity metrics between cropping systems 
were significant (Table S4; *p < .05; **p < .01; ***p < .001). (d) Principal coordinate analysis (PCoA) was used to represent dissimilarities in 
composition between samples, as assessed with the quantitative and (e) binary Jaccard indices. The effect of the cropping system on both 
β-diversity metrics was significant, as a single effect for the quantitative Jaccard index and in interaction with block for the binary index 
(Table 2). Green circles, squares and triangles correspond to samples collected in the ORGA1, ORGA2 and ORGA3 plots, respectively. 
Orange circles, squares and triangles correspond to the CONV1, CONV2 and CONV3 plots, respectively (Figure 1). (f) Log-transformed 
ratio of ASV relative abundance in CONV plots over that in ORGA plots, for 14 ASVs identified as differentially abundant between 
cropping systems by dESEq2 analysis followed by Benjamini–Hochberg adjustment (Love et al., 2014) [Colour figure can be viewed at 
wileyonlinelibrary.com]
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Overall, the foliar fungal communities were dominated by 
Ascomycota in both ORGA (87.2% of sequences) and CONV (96.8%) 
plots. About one-quarter of ASVs (249 of 1116) were shared between 
cropping systems. These shared ASVs were the most abundant, rep-
resenting 98.97% of the total number of sequences. Fourteen ASVs 
differed significantly in abundance between the cropping systems 
according to differential abundance analysis performed with dESEq2 

(Figure 2f). For instance, the causal agent of grapevine powdery 
mildew, Erysiphe necator, which was among the 10 most abundant 
fungal species, was significantly more abundant in CONV than in 
ORGA plots (Figure 2f), according to both the visual records of dis-
ease symptoms (Table S2) and metabarcoding data (2% versus. less 
than 0.1%; Table 3). The highest abundance of this major grapevine 
pathogen in samples of CONV plots was not, however, responsible 

TA B L E  2   Effect of cropping system—conventional versus organic—on the β-diversity metrics of grapevine foliar fungal communities

Dissimilarity index

PERMANOVA

Variable df F.Model R2 Pr(>F)

Quantitative Jaccard log(Sampling_Depth) (SD) 1 4.6601 0.0365 0.002

Cropping_System (CS) 1 9.7767 0.0765 0.001

Block (B) 2 2.7462 0.043 0.001

SD × CS 1 1.1651 0.0091 0.278

SD × B 2 1.0514 0.0165 0.328

CS × B 2 1.0999 0.0172 0.308

SD × CS × B 2 1.1698 0.0183 0.246

Residuals 100 0.7829

Total 111 1

Binary Jaccard log(Sampling_Depth) (SD) 1 1.0606 0.0091 0.274

Cropping_System (CS) 1 5.2676 0.0452 0.001

Block (B) 2 1.5403 0.0264 0.001

SD × CS 1 1.0279 0.0088 0.37

SD × B 2 0.9425 0.0162 0.754

CS × B 2 1.1959 0.0205 0.022

SD × CS × Bk 2 0.97 0.0166 0.642

Residuals 100 0.8572

Total 111 1

Note: Dissimilarities in community composition between samples were assessed with both the quantitative and the binary Jaccard indices. The 
effects of sequencing depth (SD, log-transformed), cropping system (CS) and block (B) on compositional dissimilarities between communities were 
evaluated using permutational analysis of variance (PERMANOVA), with the number of permutations set to 999.
Bold type indicates significant p-values.

ASV taxonomic assignment

Total ORGA CONV

Rank RA Rank RA Rank RA

Aureobasidium sp. 1 61.4 1 55.8 1 66.7

Cladosporium delicatulum 2 6.3 4 6.9 2 5.8

Filobasidium sp. 3 5.1 2 9.7 9 0.7

Alternaria sp. 4 4.4 5 3.9 4 5.0

Epicoccum nigrum 5 4.1 7 2.7 3 5.4

Cladosporium ramotenellum 6 3.5 3 7 46 <0.1

Mycosphaerella tassiana 7 3.3 8 1.8 5 4.8

Didymella sp. 8 1.4 6 2.7 33 0.1

Erysiphe necator 9 1.1 38 <0.1 6 2

Vishniacozyma victoriae 10 0.9 9 1.6 17 0.3

Note: The relative abundances (RA, in %) and ranks of ASVs were calculated for all leaf samples 
(Total; n = 112) and for samples collected from organic (ORGA; n = 55) and conventional plots 
(CONV; n = 57).

TA B L E  3   Most abundant amplicon 
sequence variants (ASVs) in grapevine 
foliar fungal communities according to the 
cropping system
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for their lower α-diversity (Figure 2a–c; Table S5). Differential 
abundance analysis also revealed that three other ASVs were sig-
nificantly more abundant in CONV plots, whereas 10 other ASVs, 
including several yeast species (from the genera Vishniacozyma, 
Sporobolomyces and Filobasidium), were significantly more abundant 
in ORGA plots (Figure 2f).

3.3 | None of the network α-properties detected 
system change

For each method of network inference, we obtained 60 fungal asso-
ciation networks (SparCC: Figure 3a; SpIEC-EaSI: Figure S2a), each 
corresponding to one of the six vineyard plots (Figure 1) and one of 
the 10 values of the percentage P of most abundant ASVs included 
in the network. Regardless of the network inference method, none 

of the six network α-properties (Table 1) differed between cropping 
systems (Tables S7 and S8), but all were significantly correlated with 
P (Tables S9 and S10).

Four network α-properties had consistent variations with P be-
tween the two methods: the total number of links (L), the number 
of connected components (CC), the network connectance (C) and 
the average node degree (DEG) (Tables S9 and S10). Increasing the 
number of ASVs included in the network increased the total num-
ber of links, linked the connected components (hence reducing CC) 
and increased the average node degree. This consistent increase in 
average node degree with P, however, masked some differences be-
tween methods. With SpIEC-EaSI, node degree increased more in 
abundant ASVs, yielding a significant, positive relationship between 
ASV relative abundance and node degree at p = 100% (Figure S3). 
This was not the case in SparCC (Figure S3). Despite this difference, 
the network connectance decreased with both methods of network 

F I G U R E  3   Effect of cropping system—conventional (CONV) versus organic (ORGA)—on the α-properties and β-properties of grapevine 
foliar fungal networks. (a) Association networks inferred from fungal metabarcoding data with SparCC (Friedman & Alm, 2012). A total of 60 
networks were inferred, corresponding to 2 cropping systems × 3 replicates (blocks) × 10 p values, with P the percentage of most abundant 
ASVs used for network inference. Only four values of P are shown on the figure. (b) Variations in network α-properties. The following 
properties (Table 1) were calculated for each network: the number of links (L) and connected components (CC), the network diameter (DIA) 
and connectance (C) and the mean degree (DEG) and negative link ratio (NLR). The percentage P of ASVs used for network reconstruction 
had a significant influence on all properties (Table S9), whereas the cropping system did not (Table S7). (c) Principal coordinate analysis 
(PCoA) showing dissimilarities between networks, measured with the βOS index (Poisot, Canard, Mouillot, et al., 2012) calculated with the 
binary Jaccard index. βOS measures the dissimilarity between two networks in terms of the presence–absence of associations between 
shared ASVs. The centroids for each cropping system are represented by grey circles. The effect of the cropping system on βOS was 
significant (Table 4). Networks were inferred with SparCC (Friedman & Alm, 2012)
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inference, consistent with their sparsity assumption (Friedman & 
Alm, 2012; Kurtz et al., 2015).

3.4 | Half of the network β-properties detect 
system change

Only two network β-properties, of the four computed (Table 1), 
differed significantly between cropping systems regardless of the 
network inference method. As with the network α-properties, the 
topological dissimilarity between networks, measured with Shieber's 
D index (Schieber et al., 2017), did not differ between cropping sys-
tems but was influenced by P, irrespective of the network inference 
method (Table 4; Table S11). These results are consistent with the 
results obtained for node degree and network connectance, which 
are components of the D index and also vary with P but do not differ 
between cropping systems (Tables S7–S10).

By contrast, cropping system had a significant effect on the over-
all dissimilarity of associations (βWN) and the dissimilarity of associa-
tions between shared ASVs (βOS) for both SparCC networks (Table 4; 

Figure 3c) and SpIEC-EaSI networks (Table S11 and Figure S2c). 
Cropping system also had a significant effect on the dissimilarity of 
associations due to ASV turnover (βST), but only in SparCC networks 
and only in interaction with P (Table 4; Table S11). These findings 
suggest that network variation between cropping systems is due to 
the turnover in associations (captured by βOS), rather than the turn-
over in ASVs (captured by βST), and show that the network β-proper-
ties defined in the theoretical ecology framework by Poisot, Canard, 
Mouillot, et al. (2012) can be used to detect differences between 
cropping systems.

3.5 | Network replicates within each system were 
highly variable but shared links

Network replicates varied considerably within a cropping system, 
regardless of the network inference method (Figure 4; Figures S4). 
When all ASVs were used for network construction with SparCC 
(p = 100%), only three associations were common to all three 
network replicates of the ORGA system, although 80 ASVs were 

TA B L E  4   Effect of cropping system—conventional versus organic—on the β-properties of grapevine foliar fungal networks inferred with 
SparCC

Dissimilarity index

PERMANOVA

Variable df F R2 Pr(>F)

Topological dissimilarity (Schieber's D) Percent_ASV (P) 1 57.75 0.50 < 0.01

Cropping_System (CS) 1 1.72 0.01 0.19

P × CS 1 0.65 0.01 0.51

Residuals 56 0.48

Total 59 1

Overall dissimilarity of associations (βWN) Percent_ASV (P) 1 2.41 0.04 < 0.01

Cropping_System (CS) 1 5.0 0.08 < 0.01

P × CS 1 2.21 0.03 < 0.01

Residuals 56 0.85

Total 59 1

Dissimilarity of associations between shared 
ASVs (βOS)

Percent_ASV (P) 1 0.53 0.01 0.61

Cropping_System (CS) 1 11.07 0.16 < 0.01

P × CS 1 0.56 0.01 0.57

Residuals 56 0.798

Total 59 1

Dissimilarity of associations due to ASV 
turnover (βST)

Percent_ASV (P) 1 1.30 0.02 < 0.01

Cropping_System (CS) 1 0.27 . < 0.01 1.00

P × CS 1 1.30 0.02 < 0.01

Residuals 56 0.95

Total 59 1

Note: The D index quantifies the topological dissimilarity between networks (Schieber et al., 2017) whereas the other three metrics (βWN, βOS and 
βST), which were calculated with the binary Jaccard index, quantify differences in associations between networks (Poisot, Canard, Mouquet, et 
al., 2012). The effect of the percentage P of the most abundant ASVs used for network inference, and the effect of cropping system (CS) on the 
dissimilarities between networks were evaluated in permutational analysis of variance (PERMANOVA). The number of permutations was set to 999 
and permutations were constrained by block.
Bold type indicates significant p-values.
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shared between the three network replicates (Figure 4). Only 
five were common to all three network replicates of the CONV 
system, although 81 ASVs were shared between the three 

network replicates (Figure 4). Similar results were obtained with 
SpIEC-EaSI, with one and five shared associations, respectively 
(Figure S4).

F I G U R E  4   Venn diagrams showing the number of fungal associations common to network replicates. (a) Associations common to the 
three network replicates inferred for the organic cropping system (ORGA1, ORGA2, ORGA3) and (b) the three network replicates inferred 
for the conventional cropping system (CONV1, CONV2, CONV3), regardless of the sign of the association, in the situation in which all 
ASVs were used for network construction (p = 100%). (c) Associations common to the six networks. Networks were inferred with SparCC 
(Friedman & Alm, 2012). The number of nodes shared by the network replicates is indicated in parentheses
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TA B L E  5   Number of associations shared between network replicates within each cropping system—conventional (CONV) and organic 
(ORGA)—depending on the method of network inference

P (%)

Network inference at the ASV level Network inference at the genus level

SparCC SpIEC-EaSI SparCC SpIEC-EaSI

ORGA CONV ORGA CONV ORGA CONV ORGA CONV

10 0 (17) 2*** (17) 0 (17) 0 (17) 0 (8) 0 (6) 0 (8) 0 (6)

20 1** (25) 2*** (23) 0 (25) 0 (23) 0 (13) 0 (13) 0 (13) 0 (13)

30 1* (36) 2* (30) 0 (36) 0 (30) 1** (14) 0 (16) 0 (14) 0 (16)

40 1* (42) 3** (44) 0 (42) 1*** (44) 1*(21) 0 (19) 0 (21) 0 (19)

50 1 (48) 3** (53) 1*** (48) 2*** (53) 1* (27) 0 (25) 0 (27) 0 (25)

60 2* (55) 3** (57) 0 (55) 4*** (57) 1* (31) 1* (28) 0 (31) 0 (28)

70 1(60) 3** (63) 1*** (60) 5*** (63) 2** (37) 0 (33) 0 (37) 0 (33)

80 1(63) 7*** (73) 1*** (63) 5*** (73) 3*** (38) 1 (36) 0 (38) 0 (36)

90 0 (71) 4** (75) 1*** (71) 6*** (75) 2* (43) 1 (42) 0 (43) 0 (42)

100 3* (80) 5** (81) 1*** (80) 5*** (81) 2* (47) 1 (47) 0 (47) 0 (47)

Note: Networks were inferred with SparCC (Friedman & Alm, 2012) or SpIEC-EaSI (Kurtz et al., 2015), by aggregating or not the ASVs at the genus 
level, and by including various percentages P of the most abundant ASVs or genera in the network. The number of shared ASVs or genera between 
the three network replicates is given in parentheses. For every combination of parameters, three random networks having the same number of nodes 
and links than the three inferred networks were simulated. The pseudo p-value is the probability, estimated with 999 simulations, that the three 
random networks shared more associations than the three inferred networks (*p < .05; **p < .01; ***p < .001).
Bold type indicates significant p-values.
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High variability of network replicates within a cropping system 
was observed for all values of P and was not reduced by the ag-
gregation of ASVs at the genus level nor by the consideration of 
only the most abundant ASVs, in contrast to our expectation. The 
networks inferred from only the most abundant ASV or the most 
abundant genera (p = 10% or 20%) barely shared any associations 
(Table 5). These low numbers of shared associations between the 
three networks replicates were, however, generally significantly 
higher than expected from three random networks having the same 
number of nodes and links (Table 5). The number of shared asso-
ciations between the three network replicates ranged between 0 
and 7, depending on P, and the network inference method (Table 5), 
while the average number of shared associations between the ran-
dom networks ranged between 0 and 1.2, suggesting that consensus 
networks within a cropping system (Figure S5) do contain robust as-
sociations but these are few in number.

Five of nine consensus associations were also found by both 
methods of network inference. The SparCCC and SpIEC-EaSI con-
sensus networks obtained for p = 100% in the ORGA system shared 
a negative association between the dominant ASV, assigned to 
Aureobasidium sp., and the third most abundant ASV in the ORGA 
system, assigned to Cladosporium ramotenellum (Figure S5; Table 3), 
as an example. The consensus networks obtained for the CONV sys-
tem also shared a negative association between the dominant ASV, 
assigned to Aureobasidium sp., and the third most abundant ASV in 
the CONV system, assigned to Epicoccum nigrum (Figure S5; Table 3). 
Three positive associations were also shared by the SparCC and 
SpIEC-EaSI consensus networks in the CONV system (Figure S5). 
No association was shared between the two cropping systems, 
regardless of the network inference method and despite 44 ASVs 
being shared (Figure 4; Figures S4), confirming the significant turn-
over in associations detected with βOS (Table 4; Table S11).

4  | DISCUSSION

The functioning of ecosystems, like that of all complex systems, 
emerges from the interaction links between its components, and 
cannot be deduced from a simple listing of organisms (Newman 
et al., 2006). The concept of NGB builds on this property of complex 
systems and proposes the use of networks of species interactions, 
rather than a simple list of species, to monitor changes in ecosystem 
functioning. It also proposes that this could be done via the auto-
matic reconstruction of ecological networks from DNA metabarcod-
ing data (Bohan et al., 2017). In the present study, we focused on 
microbial association networks as a tool for ecosystem monitoring 
because microbial networks are present in all ecosystems and con-
tribute to ecosystem functioning, and many methods exist to recon-
struct them from DNA metabarcoding data (Dohlman & Shen, 2019; 
Weiss et al., 2016). We assessed the relevance of microbial networks 
for NGB approaches using two criteria: (i) their replicability in the ab-
sence of environmental change and (ii) their ability to better detect 
environmental change than properties at the microbial community 

level. We focused on a major driver of environmental change, agri-
cultural practices (conventional versus organic agriculture). Our re-
sults demonstrated that: (i) microbial network replicates were highly 
variable within the same set of environmental conditions and (ii) 
some network-level metrics, but not all, could detect environmental 
change. By contrast, all community-level metrics revealed clear-cut 
changes in the microbial communities in response to environmental 
change (Table 1).

The high variability of network replicates within an environ-
mental condition (i.e., in our study, the same cropping system) is the 
most surprising result of our study. When the whole metabarcod-
ing data set was used to build the networks, each network replicate 
was composed of about 160 nodes (fungal ASVs, in our study) and 
about 3500 links between these nodes (corresponding to co-occur-
rence or co-exclusion relationships between these fungi). The three 
network replicates shared half of their nodes but fewer than five 
links (Figure 4). Four nonmutually exclusive hypotheses can be put 
forward to explain this result. First, the variability in microbial asso-
ciations may reflect real ecological variability. Different assemblages 
of fungal taxa could play the same role in the ecosystem because 
of the functional redundancy of the taxa (Louca et al., 2016). There 
would thus be several assemblages, involving different associations 
of taxa (and thus different networks), adapted to the same cropping 
system. Second, the relative abundances of fungal taxa, from which 
the networks are built, could vary within the same environmental 
condition because of ecological stochasticity. The fungal communi-
ties were, like most ecological communities (McIntosh, 1962), com-
posed of a small number of ubiquitous species and a large number 
of rare species whose presence varied greatly, probably because of 
the large degree of stochasticity in the deposition of fungal spores 
(Peay & Bruns, 2014). This high stochasticity in the composition of 
the rare microbiome may be responsible for the large number of 
associations that are unique to each network replicate and explain 
why the few shared associations involved abundant taxa. Third, the 
relative abundances of fungal taxa, upon which the networks are 
built, could vary within the same environmental condition because 
of methodological biases. Distortions in taxon abundance may be 
generated at each step of the DNA metabarcoding process, from 
the collection of samples to their sequencing, and at each step of 
the bioinformatic processing of the sequences (Ruppert et al., 2019). 
The fungal internal transcribed spacer (ITS) region, which was used 
here as a barcode (Schoch et al., 2012), is highly variable in terms of 
length, sequence and number of copies (Lofgren et al., 2019; Nilsson 
et al., 2008), and these features could have increased the variability 
in the sequence data. Metabarcoding data are inherently noisy and 
this noise may explain why many associations are unique to a net-
work replicate. Fourth, environmental conditions, which we consider 
homogeneous within a culture system, may not be homogeneous for 
microorganisms. Our experimental system and sampling protocols 
were designed to limit environmental variations within a cropping 
system. The vineyard plots were adjacent to each other and planted 
with grapevine clones. Moreover, we collected all leaves in less than 
2 hr and controlled for the position of the sampled leaf on the vine. 
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Nonetheless, the significant block effects in community composition 
indicate that the fungal communities were spatially structured at the 
scale of the experiment, which could account for spatial variations 
in networks. This poses a fundamental problem for biomonitoring 
approaches. The changes we want to monitor, which are generally 
large-scale changes in ecosystem functioning induced by human ac-
tivities, may not necessarily be those to which microbial communi-
ties and networks respond.

Our study also highlighted a major pitfall of network comparison 
analyses, namely the lack of statistical power due to the low number 
of network replicates. To evaluate the effect of the cropping system, 
we had 56 replicates per system at the community level, but only 
three at the network level. Indeed, several communities are needed 
to build a single network. This could explain why all community-level 
α-properties, but no network-level α-property, detected changes 
triggered by the cropping system. Despite this lack of statistical 
power, β-properties of microbial networks differed significantly be-
tween cropping systems, revealing a difference in microbial associa-
tions between organic and conventional systems. These differences 
were significant when network pairwise comparisons were based 
on shared taxa only, suggesting that the differences between or-
ganic and conventional networks were not only due to the turnover 
of taxa between cropping systems, but to re-associations of taxa. 
Overall, these results show that microbial networks inferred from 
DNA metabarcoding data can be used to detect changes in ecosys-
tems if they are analysed with network comparison tools defined by 
theoretical ecology (Pelissier et al., 2018; Poisot, Canard, Mouillot, 
et al., 2012). They also suggest that β-properties of networks are 
better indicators of change than α-properties.

Our study also allowed us to compare two microbial network in-
ference methods, SparCC (Friedman & Alm, 2012) and SpIEC-EaSI 
(Kurtz et al., 2015). The results obtained with the two methods 
were, overall, encouragingly consistent. The variability of network 
replicates within a culture system was very high, regardless of the in-
ference method used. The number of associations per network was 
lower with SpIEC-EaSI than with SparCC (about 800 versus 3500), 
probably because SpIEC-EaSI infers partial correlations, discarding 
the indirect associations retained by SparCC (Kurtz et al., 2015). 
However, the number of associations shared between network 
replicates was very low in both cases (fewer than five) (Figure 4; 
Figure S4). SpIEC-EaSI found slightly fewer shared associations 
than SparCC, especially when the number of nodes was reduced 
by filtering based on taxon abundance or taxonomic aggregation. 
However, the shared associations detected by SpIEC-EaSI had a 
higher level of significance (Table 5). These results are in line with 
previous benchmarking studies showing the lower performance of 
SparCC compared to other methods of network inference, includ-
ing SpIEC-EaSI (Hirano & Takemoto, 2019; Rötjjers & Faust, 2018), 
even though SparCC seems to work in low-diversity communities 
(Weiss et al., 2016). Both methods, however, revealed very similar 
consensus associations within each cropping system. Nine associa-
tions, in total, were shared by the network replicates and five were 
found by both methods. Although they involved ubiquitous fungal 

species that have been frequently detected on grapevine, such as 
Aureobasidium pullulans, Epicoccum nigrum and Cladosporium ra-
motenellum (Bensch et al., 2015; Dissanayake et al., 2018; Martini 
et al., 2009; Setati et al., 2015; Swett et al., 2016), these associations 
were difficult to interpret due to a lack of knowledge of microbial in-
teractions in natura. Nevertheless, these results show that the com-
bination of network replicates and inference methods permits the 
identification of apparently robust associations between abundant 
species, which could be indicative of ecological interactions.

In our study, community-level analyses were found to be more 
informative, from an ecological perspective, than network-level 
analyses. We found that the richness, diversity and evenness of fun-
gal communities were significantly higher in organic than in conven-
tional vineyards, consistent with the recent findings of Kernaghan 
et al. (2017) (but see Castañeda et al., 2018). The cropping system 
also significantly affected the composition of grapevine foliar fungal 
communities, as reported in previous studies (Castañeda et al., 2018; 
Kernaghan et al., 2017; Pancher et al., 2012; Schmid et al., 2011; 
Varanda et al., 2016). For instance, Erysiphe necator, the causal agent 
of grapevine powdery mildew, was significantly more abundant in 
conventional than in organic plots according to DNA metabarcoding 
data. These results were consistent with visual assessments of dis-
ease symptoms, indicating that, despite their numerous biases, me-
tabarcoding data do contain some quantitative information useful 
for monitoring plant disease development (Jakuschkin et al., 2016; 
Sapkota et al., 2015). The cause for such contrast in pathogen abun-
dance is possibly the nature and timing of phytosanitary treatments, 
but not the dose or number of applications, which were similar in 
the two systems (Table S1). Phytosanitary treatments also influ-
enced several yeast strains, assigned to the genera Vishniacozyma, 
Sporobolomyces and Filobasidium, which were significantly more 
abundant in organic plots. These yeast genera are frequently de-
tected on leaf surfaces due to their tolerance of irradiation and 
they might influence plant growth by producing plant hormone-like 
metabolites (Kemler et al., 2017). In addition, Vishniacozyma victo-
riae (ex Cryptococcus victoriae) was reported as a biocontrol agent 
of post-harvest diseases (Lutz et al., 2013). Other yeasts possess 
valuable features of biocontrol agents including killer activities 
for some Sporobolomyces yeasts (Klassen et al., 2017). The yeasts 
Vishniacozyma victoriae and Filobasidium wieringae (ex Cryptococcus 
wieringae) were also reported as moderate antagonists of several fil-
amentous fungi (Hilber-Bodmer et al., 2017). Future research should 
investigate the interactions between these yeast species and grape-
vine foliar pathogens, including powdery mildew.

In the future, we envisage that the analysis of microbial in-
teraction networks in the phyllosphere (i.e., the microbial habitat 
formed by plant leaves; Vacher et al., 2016; Vorholt, 2012) will 
serve the prediction of foliar disease risk in crop plants. Plant-
associated microbial interaction networks can protect plants 
against disease (Hassani et al., 2018; Kemen, 2014). Resistance 
to pathogens is mediated by direct antagonistic interactions be-
tween the resident microbiota and the invading pathogen species 
(i.e., the barrier effect; Arnold et al., 2003; Kamada et al., 2013; 
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Kemen, 2014; Koch & Schmid-Hempel, 2011; Laur et al., 2018) 
and by indirect interactions due to the activation of the host im-
mune system by the resident microbiota (i.e., the priming effect; 
Hacquard et al., 2017; Kamada et al., 2013; Perazzolli et al., 2012; 
Ritpitakphong et al., 2016; Vogel et al., 2016). The subset of the 
host-associated microbial network consisting of a pathogen and 
its interacting partners has been termed the pathobiome (Brader 
et al., 2017; Vayssier-Taussat et al., 2014). To better understand 
and predict disease risk, we should identify the microbial inter-
actions forming pathobiomes (Durán et al., 2018) and the intrin-
sic network properties that hinder invasion by pathogens (Agler 
et al., 2016; Murall et al., 2017; Poudel et al., 2016). NGB will re-
quire the monitoring in real time of these properties, based on the 
automated sequencing of leaf DNA. However, our study shows 
that statistical network inference, as currently based on a limited 
sampling effort, generates very few robust hypotheses for micro-
bial interactions, limiting its use to monitoring the disease regula-
tion services provided by the microbiota.

To conclude, here we have demonstrated that microbial net-
works, automatically inferred from DNA metabarcoding data at the 
ASV level (Callahan et al., 2016) with classical methods of statistical 
network inference such as SparCC (Friedman & Alm, 2012) or SpIEC-
EaSI (Kurtz et al., 2015), and then compared using frameworks de-
fined by theoretical ecologists (Pelissier et al., 2018; Poisot, Canard, 
Mouillot, et al., 2012), can detect ecosystem change and therefore 
have a role to play in NGB approaches. Our results suggest that net-
work β-properties were better indicators of change than network 
α-properties and should be preferred in future developments of 
NGB. We also showed that keeping the sequence data at the ASV 
level, rather than aggregating them at higher taxonomic levels, was 
preferable because it increased the replicability of the networks 
within a system. In our study, however, inferred networks were 
highly variable within a system regardless of the method of network 
inference. Network replicates shared more associations than ran-
dom networks of the same size, but the few shared associations in-
volved only the most abundant ASVs and contained little ecological 
information on the functioning of the ecosystem. Future research 
in microbial network inference should therefore improve the repli-
cability and interpretability of networks by, for instance, inferring 
ecological interaction types rather than positive and negative asso-
ciations between microorganisms. Mutual information approaches, 
based on maximal information coefficients (Reshef et al., 2011), 
could overcome this dichotomy although these approaches have not 
stood out in the inference benchmarkings done to date (Hirano & 
Takemoto, 2019; Weiss et al., 2016). All functional and ecological 
knowledge available on microorganisms needs to be gathered in da-
tabases (Louca et al., 2016; Nguyen et al., 2016; Větrovský et al., 
2020) and integrated into network inference processes. In a study 
of trophic networks, Bohan et al. (2011) showed that logic-based 
machine learning is a promising tool to integrate background knowl-
edge to network inference. Future research should investigate the 
relevance of this approach to microbial network inference. In our 
study, community-level analyses of DNA metabarcoding data were 

more statistically powerful than network-level analyses, because 
many samples were needed to build each network, and this reduced 
the number of network replicates by comparison with community 
replicates. The number of samples recommended in the literature 
for building a single network varies, from 25 (Berry & Widder, 2014) 
to 200 (Hirano & Takemoto, 2019). Our study shows that networks 
built from fewer samples (20 in the present case) can nevertheless 
detect ecosystem change, although we would advise more samples 
to increase the robustness of the inferred networks. In contrast to 
network-level properties, all community-level properties detected 
ecosystem change and provided information important for our un-
derstanding of ecosystem functioning, such as the higher microbial 
diversity and lower pathogen abundance under organic farming. 
Community-level analyses should therefore not be discarded in 
future developments of NGB, which will have to rely on very large 
DNA metabarcoding data sets combined with functional databases 
to fully benefit from network-level approaches.
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