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Abstract

By combining high-throughput sequencing (HTS) with experimental evolution, we can

observe the within-host dynamics of pathogen variants of biomedical or ecological interest.

We studied the evolutionary dynamics of five variants of Potato virus Y (PVY) in 15 doubled-

haploid lines of pepper. All plants were inoculated with the same mixture of virus variants

and variant frequencies were determined by HTS in eight plants of each pepper line at each

of six sampling dates. We developed a method for estimating the intensities of selection and

genetic drift in a multi-allelic Wright-Fisher model, applicable whether these forces are

strong or weak, and in the absence of neutral markers. This method requires variant fre-

quency determination at several time points, in independent hosts. The parameters are the

selection coefficients for each PVY variant and four effective population sizes Ne at different

time-points of the experiment. Numerical simulations of asexual haploid Wright-Fisher popu-

lations subjected to contrasting genetic drift (Ne 2 [10, 2000]) and selection (|s| 2 [0, 0.15])

regimes were used to validate the method proposed. The experiment in closely related pep-

per host genotypes revealed that viruses experienced a considerable diversity of selection

and genetic drift regimes. The resulting variant dynamics were accurately described by

Wright-Fisher models. The fitness ranks of the variants were almost identical between host

genotypes. By contrast, the dynamics of Ne were highly variable, although a bottleneck

was often identified during the systemic movement of the virus. We demonstrated that, for a

fixed initial PVY population, virus effective population size is a heritable trait in plants. These

findings pave the way for the breeding of plant varieties exposing viruses to stronger genetic

drift, thereby slowing virus adaptation.
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Author summary

A growing number of experimental evolution studies are using an “evolve-and-rese-

quence” approach to observe the within-host dynamics of pathogen variants of biomedical

or ecological interest. The resulting data are particularly appropriate for studying the

effects of evolutionary forces, such as selection and genetic drift, on the emergence of

new pathogen variants. However, it remains challenging to unravel the effects of selection

and genetic drift in the absence of neutral markers, a situation frequently encountered

for microbes, such as viruses, due to their small constrained genomes. Using such an

approach on a plant virus, we observed that the same set of virus variants displayed highly

diverse dynamics in closely related plant genotypes. We developed and validated a method

that does not require neutral markers, for estimating selection coefficients and effective

population sizes from these experimental evolution data. We found that the viruses expe-

rienced considerable diversity in genetic drift regimes, depending on host genotype.

Importantly, genetic drift experienced by virus populations was shown to be a heritable

plant trait. These findings pave the way for the breeding of plant varieties exposing viruses

to strong genetic drift, thereby slowing virus adaptation.

Introduction

Evolution in isolated populations results from the interplay between several forces, including

mutation, selection, and genetic drift. Mutation creates genetic diversity within a population.

Subsequent selection and genetic drift drive the evolution of diversity within the population.

Selection is a deterministic force that increases the frequency of the fittest variants at the

expense of the weakest ones. It can be characterized by the selection coefficient s, commonly

calculated, at a specific locus, as the relative difference in fitness conferred by two alleles.

Genetic drift, unlike selection, acts equally on all variants. It is the outcome of random sam-

pling effects between generations, resulting in stochastic fluctuations in variant frequencies

[1]. The strength of genetic drift is frequently evaluated by determining the effective popula-

tion size Ne [1]. Ne is defined as the size of an ideal panmictic population of constant size with

non-overlapping generations that would display the same degree of randomness in allele fre-

quencies as the population studied [2]. Ne is often much lower than the census population size

[3, 4], but it can be seen as its evolutionary analog [5]. When Ne is small, sampling effects are

magnified between generations, and allele frequencies therefore fluctuate strongly. For popula-

tions varying in size over time, the effective population size over a given number of generations

can be approximated by the harmonic mean �N e of effective population sizes at each genera-

tion. This approximation holds provided that the number of generations is much smaller than

�N e [6–8] and that mutation can be neglected [9]. Population size may vary over time due to

bottlenecks, which are common in natural populations. As they greatly decrease population

size, they have a disproportionate effect on the overall value of �N e [1].

When selection and genetic drift act simultaneously, the probability of fixation of a new

mutation (with a selection coefficient s), and, more generally, its evolutionary dynamics, is

controlled by the product Ne × |s| [1, 10]. If Ne × |s|� 1, then genetic drift predominates over

selection and evolution is mostly stochastic. If Ne × |s|� 1, then selection becomes effective

and evolution is mostly deterministic [10]. This rule of thumb can be applied to the evolution-

ary dynamics of pathogen variants of biomedical or ecological interest, during the course of

infection of a single host, for microbe variants escaping the immune response of their host, or
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becoming resistant to drug therapy (e.g. [11]) or, in the case of plant pathogens, for variants

adapting to host resistance genes (e.g. [12]). In this study, we combined high-throughput

sequencing (HTS) with experimental evolution to measure the within-host dynamics of five

variants of Potato virus Y (PVY, genus Potyvirus, family Potyviridae) in closely related plant

genotypes [13].

It remains challenging to unravel the effects of genetic drift and selection in the absence

of neutral markers, in studies of the adaptation dynamics of pathogens. This situation is fre-

quently encountered for pathogens with small genomes, especially viruses [14, 15]. Various

approaches based on moment [16, 17] or likelihood [18–20] methods have been proposed for

estimating Ne, but all require the genetic markers studied to be neutral. Various methods have

also been proposed for detecting selection and estimating selection coefficients. These methods

require at least some prior information about Ne (e.g. [21]) or assume that genetic drift is negli-

gible (e.g. [22]). However, in the absence of neutral markers and without prior estimates of Ne,

both selection and genetic drift must be taken into account, as these two forces act simulta-

neously on evolution. This greatly complicates the estimation of Ne and s. Only a few methods

have been proposed for the joint estimation of Ne and s from time-sampled data (see [11] and

[23] for a review). For large effective population sizes (typically Ne> 5000) and small selection

coefficients (typically |s|< 0.01), several likelihood methods based on diffusion approxima-

tions of the Wright-Fisher model [1, 11] are available [24–27]. In the situations in which these

methods are valid, the ranges of Ne and s values obtained are rather restrictive for many micro-

organisms, particularly viruses [28–31]. Foll et al. [32] recently proposed the use of approxi-

mate Bayesian computation (ABC) for the joint estimation of Ne and s in a Wright-Fisher

model. Their method can deal with both weak and strong selection regimes, but still requires

multilocus genome-wide data with mostly neutral loci to estimate Ne accurately.

In this study, we investigated the evolutionary dynamics of five variants of PVY in 15 closely

related pepper genotypes. All plants were inoculated with the same mixture of virus variants

and variant frequencies were determined with HTS in eight plants of each genotype at each of

six sampling dates after inoculation. A diverse range of evolutionary patterns was observed.

We developed a method for estimating the parameters of a multi-allelic Wright-Fisher model

with selection and genetic drift, to investigate the underlying evolutionary processes. This

method has two main advantages: it applies to a large range of selection and genetic drift inten-

sities and it works efficiently in the absence of neutral markers. The parameters of the Wright-

Fisher model (i.e. selection coefficients for each virus variant and effective population sizes at

given time points) can be estimated by coupling maximum likelihood and ABC methods and

applying them to a set of variant frequencies determined at several time points in independent

hosts. We tested the method with numerical simulations mimicking the datasets obtained with

HTS in evolve-and-resequence experiments [33]. The simulations covered an extensive range

of Ne and s values. We were then able to estimate the selection coefficient of each PVY variant

in each pepper genotype and the changes in effective population size over time during the col-

onization of the plant by the virus. Finally, by varying pepper genotypes and fixing the initial

PVY population, we provided evidence that the effective population size of PVY is a heritable

plant trait. This finding paves the way for the breeding of plant cultivars exposing viruses to

greater genetic drift and/or smaller selection effects.

Materials and methods

Biological experiment

Plant and virus material. We used 15 doubled-haploid (DH) lines of pepper (Capsicum
annuum, family Solanaceae). All the plants of a given genotype were thus genetically identical.
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All DH lines carried the major resistance gene pvr23 and differed in terms of their genetic

background [12]. They are issued from the F1 hybrid between two pepper lines, Perennial and

Yolo Wonder. Thus, on average, any pair of DH lines had 50% of alleles in common, at mark-

ers distinguishing between Perennial and Yolo Wonder. Each DH line therefore constituted a

different host environment for plant colonization by PVY. These lines were chosen for study

on the basis of quantitative differences in three previously measured factors, so as to generate

different intensities of genetic drift and selection acting on PVY populations: (i) relative

within-plant viral accumulation, (ii) resistance breakdown (RB) frequency [12] and (iii) the

number of primary infection foci after mechanical inoculation with the virus [34] (S1 Fig).

All plants were mechanically inoculated with the same equimolar mixture, based on quanti-

tative double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), of the

five PVY variants G, N, K, GK and KN [35]. Single- and double-letter names indicate single

and double mutants, respectively, of the infectious clone SON41p (Fig 1A). Three mutations

located close together in the PVY genome differentiate the five variants, and these mutations

are named after the amino-acid substitutions observed at positions 101 for the S (serine) to

G (glycine) substitution, 115 for the T (threonine) to K (lysine) substitution, and 119 for the

D (aspartic acid) to N (asparagine) substitution, in the VPg (viral protein genome-linked). The

G and N variants displayed a low level of adaptation to the major resistance gene pvr23 carried

by all plant genotypes, whereas variants K, GK and KN displayed higher levels of adaptation

[12].

Experimental set-up and plant sampling. For each pepper genotype, 48 plants were

arranged in randomized blocks, to minimize environmental effects. The first true leaf of each

plant was inoculated 29 days after sowing. We then analyzed eight plants per DH line at 6, 10,

14, 20, 27 and 34 days post-inoculation (dpi) (Fig 1B). The inoculated leaf was sampled at 6

dpi, and, on subsequent sampling dates, three uninoculated leaves, corresponding to the three

Fig 1. Virus variants inoculated to pepper plants and sampling protocol. (A) The five virus variants (in the gray box) were derived from the

SON41p PVY clone and differed only at codon positions 101, 115 and 119 of the VPg cistron. These positions are shown in green if they correspond to

the SON41p clone and in red if a non-synonymous substitution was introduced by site-directed mutagenesis. Single-letter amino acid abbreviations

are presented below each position and PVY variant. Variant names and the corresponding binary code for the three point mutations of interest are

given on the right of the sequences, with the binary code of the SON41p variant set to 000. The two additional possible variants, based on the three-

digit binary code, are also shown at the bottom. (B) Sampling protocol for one pepper genotype. We inoculated 48 plants with the virus. Eight plants

were sampled at each sampling time, from 6 to 34 days post-inoculation. The leaf circled in blue is the leaf inoculated with the virus. The leaves

sampled are shown in red.

https://doi.org/10.1371/journal.ppat.1006702.g001
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youngest unfolded leaves, were sampled and pooled together. As the plants were removed after

sampling, the virus populations obtained from each plant sample were independent. This pre-

vented possible effects on virus population dynamics due to the removal of infected leaves and

subsequent re-sampling. Each leaf sample was ground in four volumes of 0.03 M phosphate

buffer (pH 7.0) supplemented with 2% (w/v) diethyldithiocarbamate, as previously described

[35].

High-throughput sequencing and determination of PVY variant frequencies. Total

RNA was purified from individual plant samples with the Tri-Reagent kit (Sigma-Aldrich).

It was subjected to reverse transcription-polymerase chain reaction (RT-PCR) with tagged

primers for the amplification, over 35 cycles, of a 104-nucleotide region encompassing the

polymorphic region of the PVY VPg cistron. Eight differently tagged primers were used, corre-

sponding to the eight different plant replicates of the same plant genotype for each sampling

date (S1 Table). Amplified DNAs corresponding to the eight plant replicates were pooled

together on the basis of their intensity on electrophoresis gels.

HTS was performed at the Genomic Platform of INRA Toulouse. For this purpose, 2 × 150

base-pair (bp) libraries with multiplex adapters were prepared, and all the RT-PCR-amplified

products were pooled into a single large sample (12 cycles). This sample was run on a MiSeq

Illumina paired-end sequencer with the MiSeq Reagent Kit v2, for 500 cycles. We chose to use

MiSeq Illumina sequencing because this technology has a much lower error rate than other

high-throughput sequencing technologies, such as 454 sequencing [36]. By using tagged prim-

ers and subsequent multiplex adapters, we were able to assign a plant genotype and a sampling

date to each sequence.

In the initial sequence analysis, we used FLASH software to obtain the consensus sequence

from reads 1 and 2 with a minimum overlap length between the two reads of 63, a maximum

overlap length of 153 and a maximum allowed ratio of the number of mismatched base pairs

to overlap length of 0.2 [37]. The sequences were then sorted by adapter and by tag. Finally,

the sequences corresponding to each PVY variant were determined with the help of ‘agrep’

function in R software [38], and sequence counts were used to assess the composition of the

virus population in each sample. After sequence sorting, we had 374 to 14141 sequences per

sample, with a mean of 3295 sequences per sample.

We carried out two complementary sequence analyses to detect PVY mutations (see S1

Text for details). It was important to perform these analyses as the presence of mutants might

have affected virus population dynamics and the intensities of the evolutionary forces studied.

In the first analysis, we looked for all eight possible variants based on the three codon positions

of interest in the VPg cistron, i.e. the five analyzed variants, G, N, K, GK and KN, together

with the SON41p, GN and GKN variants (corresponding to all the possible binary codes in

Fig 1A). The sum of the frequencies of all three additional variants, SON41p, GN and GKN,

remained below 5%, and these variants were not, therefore, considered in Ne and s estimations.

The raw data from this analysis (i.e. number of sequences of each variant in each of the 677

samples analyzed) are available from S2 Table. We then calculated the frequencies of de novo
substitutions in each sample and at each nucleotide position of all sequences, by comparison

with the sequence of the SON41p reference clone (equivalent to comparison with sequences

of the G, N, K, GK and KN clones). In all, only PVY populations sampled from six of the 677

plants studied presented a de novo substitution with a frequency exceeding 5% (S1 Text).

These PVY populations were removed for subsequent analyses. Furthermore, numerical simu-

lations showed that a sixth unaccounted for variant present at a mean frequency of 7% in virus

populations had no significant impact on estimates of Ne and s (see below), justifying our use

of a 5% threshold.
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Genetic analysis and heritability estimation. With this experimental design, we studied

the phenotype of each pepper DH line in terms of its effect on PVY populations. The plants

within each pepper DH line were genetically identical and experimental conditions were set

up so as to ensure an absence of differences in environmental effects between DH lines. We

were therefore able to estimate the heritability of plant traits of interest, corresponding to the

evolutionary forces exerted by the plant on PVY populations, by constituting two replicates

for each DH line dataset. More precisely, we assessed the heritability of the intrinsic rates of

increase for the five PVY variants and of the effective population sizes of PVY. As the initial

population of PVY was fixed and identical for all plant genotypes, we did not consider the

effect of PVY population composition on the heritability of effective PVY population size. To

estimate heritabilities, we split the dataset for the 48 plants for each DH line in two, by ran-

domly selecting four of the eight plants at each sampling date. The broad-sense heritability of

any plant trait of interest can be estimated as h2 ¼ s2
G=ðs

2
G þ s2

e=nÞ, where s2
G corresponds to

the genotypic variance, s2
e to the phenotypic variance and n to the number of replicates [39],

the variance being set to the sum of the squared deviations from the mean.

Estimation of selection and genetic drift intensities

We developed a method for estimating the parameters of a multi-allelic Wright-Fisher model

with selection and genetic drift for a haploid population. The parameters and state variables of

the model and the observed variables are summarized in Table 1.

Table 1. Main notations for the observations and the model.

Designation (unit) [reference value]

Observed variables

xpðtdÞ ¼ ðx
p
1 ðtdÞ; . . . ; xpnvar ðtdÞÞ Variant sequence counts in virus population p at sampling time td (seq a)

f pðtdÞ ¼ ðf
p
1 ðtdÞ; . . . ; fpnvar ðtdÞÞ Variant frequencies in virus population p at sampling time td (no unit)

State variables

λpðtÞ ¼ ðlp
1
ðtÞ; . . . ;l

p
nvar
ðtÞÞ Theoretical variant frequencies in virus population p at time t of a Wright-

Fisher model (no unit)

Parameters of interest

r ¼ ðr1; . . . ; rnvar Þ Variant relative intrinsic rates of increase (generation−1) a

ηe ¼ ðZ
IO
e ; Z

S1
e ; Z

S2
e ; Z

S3
e Þ Successive virus effective population sizes (individuals) b

Fixed parameters

λinoc Vector of variant frequencies in the virus inoculum (no unit)

T Vector of measurement dates (day) [(0, 6, 10, 14, 20, 27, 34)]

Additional notations

Ne = (Ne(1), . . ., Ne(34)) Vector of virus effective population sizes (piecewise constant function of ηe)

NheðtdÞ Harmonic mean of virus effective population sizes at sampling time td

s½f�i ðtdÞ� Standard deviation of the frequencies of virus variant i at sampling time td
over the virus populations p

λdetðtÞ ¼ ðldet
1
ðtÞ; . . . ;l

det
nvar
ðtÞÞ Vector of variant frequencies at time t for an infinite size Wright-Fisher model

a The abbreviation “seq” is the number of sequences representing the virus population or a given variant in

this population.
b The mean intrinsic rate of increase �r of all virus variants is one.
c With the full model M4, ZIOe in the inoculated organ for t 2 [1, 6], ZS1

e at the onset of systemic infection for t 2

[7, 10], ZS2
e for t 2 [11, 14] and ZS3

e for t 2 [15, 34].

https://doi.org/10.1371/journal.ppat.1006702.t001
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Notation: Observed variables, state variables and parameters of interest. λinoc denotes

the vector of the observed variant frequencies in the parental virus population, i.e. the inocu-

lum used to inoculate all host plants in the experiment. Thereafter, the measurement date

vector T = (0, 6, 10, 14, 20, 27, 34) is indexed by td (d = 0, . . ., 6). In particular, t0 = 0 is the

inoculation date and td (d = 1, . . ., 6) are the sampling dates. The time, indexed by t = 1, . . .,

34, is the number of days post-inoculation and indicates the viral generation, as the genera-

tion time was assumed to be one day [40]. For a given plant genotype, at each sampling

date td, a sample of ninf(td) infected plants was observed, for which we measured the vectors

xpðtdÞ ¼ ðx
p
1ðtdÞ; . . . ; xp

nvar
ðtdÞÞ, with xp

i ðtdÞ the number of sequences obtained for virus

variant i (1� i� nvar) in population p (1� p� ninf(td)). Thereafter, replacing an index

in a notation by • is equivalent to summing over the corresponding index set. The total

number of sequences obtained from virus population p at time td is thus xp
�
ðtdÞ. Finally,

f p
ðtdÞ ¼ ðf

p
1 ðtdÞ; . . . ; f p

nvar
ðtdÞÞ, with f p

i ðtdÞ the observed frequency of virus variant i in popula-

tion p at sampling date td. It is calculated as xpðtdÞ=xp
�
ðtdÞ.

The state variable of interest is λpðtÞ ¼ ðlp
1
ðtÞ; . . . ; l

p
nvar
ðtÞÞ, with l

p
i ðtÞ the frequency of

virus variant i (1� i� nvar) in virus population p at any date t = 1, . . ., 34. Virus variant

dynamics are represented by a Wright-Fisher model (see below) to infer θ = (r, ηe), the vector

of parameters describing the underlying evolutionary forces. r ¼ ðr1; . . . ; rnvar
Þ is the vector of

the intrinsic rates of increase ri of each virus variant i. We assumed that the mean intrinsic rate

of increase �r over all variants was one, as we were interested only in the relative intrinsic rates

of increase. The selection coefficient of a variant i is usually computed as si = ri − 1. The vector

parameter ηe defines a piecewise function describing effective population sizes Ne(t). We deter-

mined the temporal variation of effective population sizes, using four models with ηe having

one to four parameters. With the more general model M4, ηe ¼ ðZ
IO
e ; Z

S1
e ; Z

S2
e ; Z

S3
e Þ. ZIO

e is the

effective population size of the viral population in the inoculated organ; this stage lasts t1 = 6

days in our experimental design. ZS1
e is the effective population size during the onset of sys-

temic infection; this stage lasts t2 − t1 = 4 days. ZS2
e is the effective population size during the

next t3 − t2 = 4 days and ZS3
e the effective population size later on, during the last t6 − t3 = 20

days of survey. Accordingly, we define Ne(t) as follows:

NeðtÞ ¼

ZIO
e t 2 ½1; . . . ; t1�

ZS1
e t 2 ½t1 þ 1; . . . ; t2�

ZS2
e t 2 ½t2 þ 1; . . . ; t3�

ZS3
e t 2 ½t3 þ 1; . . . ; t6�

8
>>>>>>><

>>>>>>>:

ð1Þ

With model M3, ηe ¼ ðZ
IO
e ; Z

S1
e ; Z

S2
e Þ. Ne(t) has three parameters: (i) NeðtÞ ¼ ZIO

e when

t 2 [1, 6], (ii) NeðtÞ ¼ ZS1
e when t 2 [7, 14] and (iii) NeðtÞ ¼ ZS2

e when t 2 [15, 34]. With model

M2, ηe ¼ ðZ
IO
e ; Z

S
eÞ. Ne(t) has two parameters: (i) NeðtÞ ¼ ZIO

e when t 2 [1, 6] and (ii) NeðtÞ ¼ ZS
e

when t 2 [7, 34]. Finally, with model M1, ηe = (ηe): the effective population size for the virus

remains constant throughout the experiment (Ne(t) = ηe for t 2 [1, 34]). The effective popula-

tion size at any sampling date of interest td is given, approximately, by the harmonic mean of

the effective sizes of the successive generations Nh
e ðtdÞ ¼

1

td

Xtd

j¼1

1

NeðjÞ

 !� 1

.

The multi-allelic Wright-Fisher model with selection and genetic drift. The Wright-

Fisher model occupies a central position in population genetics [41]. It assumes an ideal

population: a randomly mating haploid population of finite size reproducing in discrete non-
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overlapping generations, with no structure. By definition, Ne is the size of an ideal population

(i.e. obeying previous assumptions) that would display the same degree of randomness in vari-

ant frequencies as the real population studied [2]. As for any model-based approach, the use

of this concept requires the actual population being not too far from an ideal Wright-Fisher

model with suitable parameters [10]. Formally, the Wright-Fisher model is very similar to the

quasispecies model describing the evolution of DNA (or RNA) sequences in finite populations

[42]. In practice, the Wright-Fisher model has been used to infer the evolutionary history of

viruses (e.g. [11]) and it can also be used to describe the stochastic dynamics of the frequency

of the nvar virus variants considered here. Let z(t) be the vector of the number of each virus var-

iant i (1� i� nvar) in generation t and, with previous notations, let λðtÞ ¼
zðtÞ
NeðtÞ

be the corre-

sponding vector of variant frequencies. The dynamics of z(t) are shaped by random genetic

drift and selection. Let prðtÞ ¼ ðpr1ðtÞ; . . . ; prnvar
ðtÞÞ be the vector of the probabilities of sam-

pling each virus variant from generation t to generation t + 1. For t� 1, the distribution of

z(t + 1) conditionally on z(t) follows a multinomial distribution [41]:

zðt þ 1ÞjzðtÞ � Multðsize ¼ NeðtÞ; prob ¼ prðtÞÞ ð2Þ

priðtÞ ¼
riliðtÞXnvar

j¼1
rjljðtÞ

with liðtÞ ¼
ziðtÞ
NeðtÞ

and λð0Þ ¼ λinoc ð3Þ

8
><

>:

In the model, selection reweights the different genotypes according to their constant fitness.

Fitness does not depend on the composition of the population (i.e. there is no frequency-

dependent selection). As population size tends to1 (i.e. genetic drift becomes negligible), the

stochastic process of variant frequencies described by eq (2) converges on deterministic recur-

sion describing l
det
i ðtÞ which approximates the mean frequency of variant i at generation t. For

t� 1:

l
det
i ðt þ 1Þjr ¼

ril
det
i ðtÞPnvar

j¼1
rjl

det
j ðtÞ

with λdetð0Þ ¼ λinoc ð4Þ

Parameter estimation. We propose an approach combining a first step relying on maxi-

mum-likelihood followed by a step relying on ABC, to estimate the parameters of interest

θ = (r, ηe). The first step estimates the vector of the relative intrinsic rates of increase of each

virus variant r by maximum-likelihood methods. Let the vector x�ðtdÞ ¼ ðx�1ðtdÞ; . . . ; x�nvar
ðtdÞÞ

be the total number of sequences of virus variant i obtained in the ninf(td) infected

plants (of a given plant genotype) at sampling date td. This step assumes that

x�ðtdÞ � Mult size ¼
Xnvar

i¼1

x�i ðtdÞ; prob ¼ λdetðtdÞjr

 !

. Let x denote the vector of all total

sequence counts, at all sampling time-points, constituting one dataset. As the samples are

independent between sampling dates, the likelihood function is:

lðxjrÞ ¼
Y6

d¼1

dM size ¼
Xnvar

i¼1

x�i ðtdÞ; prob ¼ λdetðtdÞjr

 !

;

dM being the probability density function (pdf) of the multinomial distribution. Under these

hypotheses, r can be inferred by minimizing −log(l(x|r)), assuming that the mean intrinsic rate

of increase �r of all variants is one. The estimate of r, denoted r̂ , was obtained straightforwardly,

using the ‘nlminb’ optimization routine implemented in R software version 3.0.2 [38].
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The second step estimates the vector of effective population sizes ηe of a given model Mj

(j = 1, � � �, 4) with ABC, conditionally to r̂ . All ABC algorithms involve the simulation of a large

number of possible datasets by sampling the parameters of interest (here ηe) from prior proba-

bility distributions π(ηe). We used independent log-uniform priors on [10, 2500] for each

parameter of ηe. For a given ηsim
e sampled in π(ηe), a dataset was simulated as follows. The first

step was to simulate 48 (= 6 sampling dates � 8 plants/date) independent dynamics of evolution

of virus variant frequencies lasting 34 days (max(T)) with the Wright-Fisher model (eqs 1, 2

and 3) parameterized by ðr̂ ;ηsim
e Þ. Let λl

simðtÞ (l = 1, . . ., 48; t = 1, . . ., 34) be this set of simulated

dynamics. The second step was to simulate the experimental design. Eight plants were analyzed

with HTS at each sampling date, xtot;l
sim being the total number of sequences obtained for plant l.

Variant counts xl
simðtdÞ for HTS are sampled from multinomial distributions. A single sample

was obtained for each dynamic l: at 6 dpi, xl
simð6Þ � Multðsize ¼ xtot;l

sim ; prob ¼ λl
simð6ÞÞ with

l 2 [1, 8]; at 10 dpi, xl
simð10Þ is obtained similarly with l 2 [9, 16], and so on, until 34 dpi,

with l 2 [41, 48]. The observed frequencies are f l
simðtdÞ ¼

xl
simðtdÞ

xtot;l
sim

. The last step was to

calculate the vector of summary statistics from the simulated dataset, Ssim ¼ ðS
t1
sim; . . . ; St6

simÞ. A

single summary statistic was calculated for each sampling date. This statistic is the inverse of

the mean of the standard deviation of the variant frequencies at sampling date td. Formally,

Std
sim ¼

1

nvar

Xnvar

i¼1

s½f �sim;iðtdÞ�

 !� 1

where s½f �sim;iðtdÞ� is the standard deviation (over the infected

hosts at sampling date td) of f l
sim;iðtdÞ, the observed frequency of variant i. In practice, estimation

was performed with the adaptive ABC algorithm of Lenormand et al. [43] implemented in the

R package EasyABC with tuning parameters nbsimul = 5000, paccmin = 0.04 and α = 0.5. Models

M1, M2, M3 and M4 (embedding Ne(t) functions with one to four parameters) were com-

pared, using the multinomial logistic regression method implemented in the ABC package

(function postpr with 2.105, 2.5 × 105, 7.5 × 105 and 1.5 × 106 simulated summary statistics

under models M1, M2, M3 and M4, respectively, and tuning parameter tol = 5 × 10−4). The

estimation code will be made available upon request.

Numerical simulations

Before using the estimation method on the datasets corresponding to the biological experi-

ment, we performed several batches of simulations to assess its ability to infer effective popula-

tion sizes and selection coefficients accurately (see S2 Text for details). Briefly, in experiment

1, we first simulated the changes in frequencies of five virus variants under 750 selection and

genetic drift regimes with a Wright-Fisher model for haploid individuals. The simulations

were designed to fit the experimental setup of our datasets (48 independent host plants regu-

larly analyzed at 6 sampling dates). For each of the 750 datasets obtained, the true parameters

θtrue were known and could be compared with the estimated parameters θ̂. In experiment 2,

we assessed the sensitivity of the estimation method to the presence of a sixth undetected virus

variant. This sixth variant was selectively neutral (its selection coefficient is zero), present in

the inoculum at a frequency of 3% and still present at the last sampling date (34 dpi) in all

plants analyzed, at frequencies ranging from 1% to 6%. It affected the dynamics of the five vari-

ants of interest in all plants but was not detected, so the variant frequencies measured by HTS

(and used to estimate θ̂) are noisy with respect to their true values. In all, 350 simulated data-

sets were analyzed in this second test.
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Results

In this section, we will (i) describe the virus dynamics observed in the biological experiment

with 15 plant genotypes, (ii) validate the method for estimating selection and genetic drift with

numerical simulations and (iii) describe the estimates obtained in the biological experiment.

Virus variant dynamics in the 15 plant genotypes

The frequencies of the five virus variants were assessed in completely isolated populations dur-

ing the course of infection, in 15 different plant genotypes. For each of these 15 pepper geno-

types, 48 plants were inoculated with the same equimolar mixture of the five variants, and the

frequencies of the virus variants were determined in eight plants at each of six sampling dates,

from 6 to 34 days post-inoculation (Fig 2). In a few cases, no viruses were detected in plant

samples (lacking bars in Fig 2). These negative samples may reflect the presence of an extreme

bottleneck at inoculation, leading to virus population extinction, or a long time lag to systemic

infection of the plant (for measurements from 10 to 34 dpi), resulting in the sampling of leaves

not yet infected (e.g. DH line 2321). Negative samples were most frequent for the first two

dates on which systemically infected leaves were analyzed, i.e. at 10 and 14 dpi, probably indi-

cating a time lag to systemic infection in some DH lines. Negative samples were observed in

only four DH lines (e.g. DH lines 219 and 2321). No infection was observed in a mean of 3.5

(resp. 2.0) plant samples 10 (resp. 14) dpi for the four DH lines concerned.

The virus populations present in all infected plants and in the common inoculum were ana-

lyzed by HTS, to determine the frequencies of the five PVY variants. Inoculum analysis con-

firmed that all variants were present in roughly equimolar proportions, with 22.6% of variant

G, 17.5% of N, 20.6% of K, 17.1% of GK and 22.2% of KN.

The raw data for variant frequency dynamics provided considerably different patterns

between the 15 pepper genotypes (Fig 2, S2 and S3 Figs). Variant frequencies were similar

between virus populations sampled on the same date in some plant genotypes, consistent with

weak genetic drift (e.g. DH lines 240 and 2430, Fig 2A and 2B), whereas they differed in other

plant genotypes (e.g. DH lines 2321 and 219, Fig 2D and 2E). Furthermore, the heterogeneity

of variant frequencies between the eight plants analyzed fluctuated between dates, probably

due to changes in effective population size during the course of infection (e.g. DH line 2344,

Fig 2C). The four pepper genotypes for which some samples were virus-negative were also

characterized by the highest heterogeneity in variant frequencies, consistent with an extreme

bottleneck at inoculation and/or during systemic movement of the virus (see DH lines 2321,

219, 2256 and 2400 in Fig 2D and 2E, S2D and S3I Figs). Selection regimes also differed

between lines. In some DH lines, all variants remained present at all dates (e.g. DH line 240,

Fig 2A), whereas one variant (e.g. DH line 219, Fig 2E), or up to two variants (e.g. DH lines

2430, 2344, 2321, Fig 2B–2D) became extinct in others.

Validation of the estimation method with numerical simulations

Before its application to the experimental dataset, we validated the estimation method pro-

posed by numerical simulations of a Wright-Fisher model with selection and genetic drift for

haploid individuals.

Range of selection and genetic drift intensities explored. The 750 datasets generated in

experiment 1 corresponded to very different selection and genetic drift regimes (S4 Fig). Ran-

domly sampled effective population sizes in the inoculated organ and at the onset of systemic

infection were combined independently, to simulate highly diverse dynamics of effective pop-

ulation size (see S2 Text). This led to the exploration of a large range of harmonic means of
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Fig 2. Five contrasting datasets obtained in the biological experiment. Each line of bar plots represents the dynamics of virus variants in a single DH

line over time: (A) 240, (B) 2430, (C) 2344, (D) 2321 and (E) 219. We inoculated 48 plants per DH line, and we sampled eight plants, which were

subsequently removed from the experiment, at each of the six sampling dates (6, 10, 14, 20, 27 and 34 days post-inoculation). Within each bar plot, the

frequencies of the five variants (see top of the figure for the color code) in each infected plant sample are represented by single bars (labeled from 1 to 48).

The missing bars correspond to plant samples for which no viruses were detected. The last bar indicates the mean viral composition in the infected plants.

Each individual bar plot corresponds to a single sampling date, indicated at the top of each column of barplots. The five DH lines displayed contrasting

virus variant dynamics, consistent with contrasting patterns of selection and genetic drift. We could not sample plants of DH line 240 (A) 34 days post-

inoculation, because severe necrosis symptoms invading the stem led to the death of all plants at this sampling date.

https://doi.org/10.1371/journal.ppat.1006702.g002
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effective population size Nh
e ðtdÞ, ranging from 10 to 1996 (5% quantile = 22, mean = 230, 95%

quantile = 873). Relative fitness values (ri) ranged from 0.75 to 1.27, independently of effective

population size (S4 Fig). They reflect a mean absolute selection coefficient |s| of 0.08 (5% quan-

tile = 0.007, 95% quantile = 0.18). As a result, highly diverse simulated datasets were obtained.

Overall, the patterns encountered in the experimental datasets (Fig 2) were similar to some of

those obtained for the simulated datasets. The simulated datasets also included a number of

datasets with more extreme patterns of selection and genetic drift regimes. We illustrate the

differences in the genetic drift regimes observed in Fig 3. For a given dataset, variant frequen-

cies could be roughly similar (Fig 3A) or very different (Fig 3D) between populations, at all

Fig 3. Contrasting datasets obtained in numerical experiment 1. For each dataset (series A to D), the composition of eight populations was observed

at six sampling dates, from 6 to 34 days post-inoculation, in independently sampled hosts. Within each plot, each bar represents the composition of the

population in one plant at one date, and the last bar shows the mean frequencies over these populations. The color code at the top is used to distinguish

the five variants. The harmonic mean of effective population size is indicated in the main title of each plot. The parameter values used for the simulations

are: series (A) r = (0.971, 0.92, 1.09, 0.992, 1.027),NIOe ¼ 1343,NS1
e ¼ 822; series (B) r = (1.05, 1.005, 1.077, 0.963, 0.904),NIOe ¼ 1815,NS1

e ¼ 12; series

(C) r = (1.045, 1.031, 1.12, 0.879, 0.924),NIOe ¼ 45,NS1
e ¼ 1473; series (D) r = (1.105, 0.943, 0.999, 1.041, 0.912),NIOe ¼ 10,NS1

e ¼ 1025. Note thatNS1
e is

used for the iterative computation of a sequence of effective population sizes varying each five generations during the systemic infection stage.

https://doi.org/10.1371/journal.ppat.1006702.g003
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sampling dates. Moreover, the independent sampling of effective population sizes in the inocu-

lated organ and during systemic infection generated genetic drift regimes that varied over

time. For example, we observed strong similarities between populations at the first sampling

date, but greater heterogeneity at subsequent dates (Fig 3B) and the opposite pattern (Fig 3C).

Parameter estimation accuracy. Effective population sizes Nh
e ðtdÞ and intrinsic rates of

increase of each variant ri were inferred for each of the 750 datasets simulated in experiment 1

(with 5 virus variants) and the 350 datasets simulated in experiment 2 (with the 5 virus variants

and an additional undetected sixth variant) using the more general model M4. True parame-

ters (i.e. known parameter values used in the simulations) and estimated parameter values

were compared, to assess estimation accuracy.

In numerical experiment 1, HTS analysis provided samples of the true frequencies of the

virus variants in the simulated Wright-Fisher populations. The estimates of the intrinsic rates

of increase r̂ i were very accurate, with an R2 of the best-fit line of 0.93, a slope close to 1 (0.98)

and an intercept of 0.02 (Table 2, Fig 4A). The estimates of the harmonic mean of the effective

population size N̂ h
e ðtdÞ were also accurate, with a best-fit line close to the first bisector (Table 2,

Fig 4B) (R2 = 0.86), despite a slight trend towards overestimation (slope = 0.91, intercept = 28).

In both cases, mean relative bias was small and its 95% confidence interval included zero. The

90% confidence intervals of all estimated parameters were highly accurate. They included the

true parameter values in nearly 90% (resp. 91%) of the cases for N̂ h
e ðtdÞ (resp. r̂ i) (Table 2).

In numerical experiment 2, we assessed the sensitivity of the estimation method to the pres-

ence of a sixth undetected virus variant (see S2 Text). This additional variant was neutral and

initially present in the inoculum at a frequency of 3%. It affected virus population dynamics in

all 48 host plants of the dataset, because we retained only Wright-Fisher simulations in which

the frequency of this sixth variant ranged from 0.01 to 0.06 at 34 dpi. In the 350 simulated data-

sets, the mean frequency of the sixth variant at all sampling dates and in all plants was 0.07 (5%

quantile = 0.01, median = 0.04, 95% quantile = 0.24). However, this variant was considered to

be undetected by the HTS method. Thus, HTS analysis provided noisy estimates of the true

frequencies of the five virus variants of interest: the mean relative difference between their true

frequencies in the simulated population and their measured frequencies was 0.08 (5% quan-

tile = 0.01, median = 0.05, 95% quantile = 0.29). Moreover, inference was performed assuming,

as in numerical experiment 1, that the inoculum was an equimolar mixture of the five variants

of interest. Despite this detection bias, the estimates of both Nh
e ðtdÞ and ri remained consistent

(Table 2). The systematic presence of an undetected virus variant at a mean frequency of 0.07

only slightly affected the performance of the estimators (mean relative bias confidence

Table 2. Performance of the estimators of the harmonic mean of effective population sizesNheðtdÞ and variant fitness r obtained with the two numer-

ical experiments.

Experimenta Parameterb R2 Intercept Slope Accuracy of 90% CI Mean bias [95% CI]

Experiment 1 r̂ i (all variants) 0.93 0.02 0.98 91% 10−4 [-0.05;0.05]

Experiment 1 N̂he (all dates) 0.86 28 0.91 90% 0.18 [-0.42; 1.48]

Experiment 2 r̂ i (all variants) 0.92 0.06 0.94 89% 8.10−4 [-0.07;0.07]

Experiment 2 N̂he (all dates) 0.85 20 0.87 87% 0.03 [-0.53; 1.17]

a Experiment 1: 750 simulated datasets with 5 variants under a wide range of selection and genetic drift regimes. Experiment 2: 350 simulated datasets with

an additional and undetected sixth variant.
b For each parameter, the determination coefficient R2, the slope and the intercept of the best linear model fit between predicted and true values are given,

together with the percentage of true parameter values included in the 90% confidence interval and the mean relative bias and its 95% confidence interval.

https://doi.org/10.1371/journal.ppat.1006702.t002
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intervals systematically included zero, the R2 of the best-fit lines remained unchanged, 90% of

confidence intervals remained highly precise).

In a nutshell, from these numerical simulations with known parameter values, we can con-

clude that the proposed inference method provides accurate estimates of the intrinsic rates of

increase ri of each variant i, and, thus, of their selection coefficient, together with the dynamics

of effective population size Nh
e ðtdÞ during the time course of the experiment.

Estimation of effective population sizes and variant fitness in the 15 plant

genotypes

We estimated the Ne(t) and ri of the PVY populations in each DH line with a Wright-Fisher

model including selection and genetic drift. By contrast to the numerical experiments, the evo-

lutionary parameters underlying the true dynamics of virus populations in their hosts were

unknown. The Wright-Fisher model fitted the data very satisfactorily (Fig 5). The best-fit line

between observed and fitted mean variant frequencies (averaged over all virus populations

and sampling times) was very close to the first bisector (Fig 5A; slope = 0.92, intercept = 0.01,

R2 = 0.92). This was also the case for the variability of variant frequencies between virus popu-

lations at each sampling date td (Fig 5B; slope = 0.92, intercept = -0.09, R2 = 0.84). A Wright-

Fisher model including selection and genetic drift accurately described the mean evolutionary

dynamics of a virus population and the variability of these dynamics between hosts. Due to an

identifiability issue (we observed the relative frequencies of variants rather than variant densi-

ties), we had to fix the number of generations per day γ. We set this number to 1, a value close

Fig 4. Inferences for variant fitness r and for the harmonic mean of effective population size Nh
e ðtdÞ, for the 750 datasets simulated with five

virus variants. (A) Correlation between true ri (x-axis) and estimated r̂ i (y-axis) (all variants considered together). (B) Correlation between trueNhe (x-axis)

and estimated N̂he (y-axis) (all sampling dates considered together, logarithmic scale). In both panels, the black line is the first bisector and the red dashed

line is the best-fitting linear model. In panel A, the 9 points with r̂ i < 0:7 correspond to datasets in which a highly counterselected variant was observed in

only a few plants (5, on average, of the 48 plants) due to an initial low effective population size.

https://doi.org/10.1371/journal.ppat.1006702.g004
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to that reported by Khelifa et al. [40]. Different γ values would change ri and Ne(t) estimates to

r1=g

i and γNe(t), but would have no effect on their ranking.

Relative fitness values (ri) ranged from 0.43 to 1.25 (corresponding to |s|: 5% quantile = 0.004,

mean = 0.12, 95% quantile = 0.27) and were associated with narrow 90% confidence intervals

(S3 Table). The fitness ranks of the PVY variants were very similar in most DH lines (Fig 6A

and 6C). Variant G was the weakest in all DH lines, followed by variant N in 13 DH lines. Vari-

ant GK was the fittest variant in 13 DH lines, with variant K the fittest variant in the remaining

two lines (DH lines 2256 and 2430). Overall, variants K and GK were the two fittest variants in

12 DH lines; variants GK and KN were the two fittest in DH lines 2349 and 2321, and variants

N and GK the two fittest in DH line 219. The fitness difference between the weakest and the fit-

test variants ranged from 0.14 for DH line 219 to 0.81 for DH line 2349.

We further estimated the dynamics of effective population size over the time course of the

experiment, as modeled by a piecewise function Ne(t), using a model selection procedure.

Four models with one to four parameters were considered. The most general model M4 distin-

guished four successive effective population sizes (one in the inoculated organ and three dur-

ing systemic infection). M4 was the model best supported by the data for five DH lines (2173,

2321, 2328, 2344 and 2367). Model M3 distinguished three successive effective population

sizes (one in the inoculated organ and two during systemic infection). It was best supported by

the data for five DH lines (219, 221, 2256, 240 and 2430). Model M2, which distinguished two

successive effective population sizes (one in the inoculated organ and one during systemic

infection), was selected for a single DH line (2426). Finally, with M1, the effective population

size of the virus population remained constant. This model was selected in the four remaining

DH lines (2123, 2264, 2349 and 2400). The corresponding posterior probabilities of each

Fig 5. Goodness-of-fit of the Wright-Fisher model M4 with the data of the biological experiments. (A) Correlation between the observed mean

frequencies of the five virus variants (averaged over all virus populations and sampling times (mean½f�i ð�Þ�) and their fitted values (n = 75). (B) Correlation

between the logarithm of the observed mean (averaged over the variants) standard deviation of variant frequencies (between virus populations) at each

sampling date td (1=nvar
Pnvar

i¼1
s½f�i ðtdÞ�) and their fitted values (n = 87). In both panels, the black line is the first bisector and the red dashed line is the best-

fitting linear model.

https://doi.org/10.1371/journal.ppat.1006702.g005
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model are shown in S4 Table, together with effective population size estimates and 90% credi-

bility intervals.

At the first sampling date, considerable variability was observed (Fig 6B and 6D), with

effective population sizes ranging from 13 for DH lines 219 and 2256 to 1515 for DH line

240. This was not surprising, given that we chose the DH lines on the basis of the density of

primary infection foci in inoculated organs [34] (S1 Fig). A much narrower range of effective

population sizes, from 18 to 462, was observed across all plant genotypes at 10 dpi, the first

date on which systemic infection was observed. From 6 to 10 dpi, effective population sizes

decreased in eight DH lines (Fig 6B), remained approximately constant in six DH lines

(Fig 6D) and increased slightly in a single plant genotype (DH line 2173, Fig 6D). Later on,

from 10 to 34 dpi, effective population size increased in eight DH lines (mostly DH lines

Fig 6. Fitness of virus variants and effective population size estimates for the 15 plant genotypes. (A) Estimates of intrinsic rates of increase r̂ i for

each variant i for the DH lines 2321, 240, 2430, 2367, 2328, 2426, 2344 and 221. (B) Estimates of effective population size N̂eðtÞ during the time course of

the experiment for the DH lines listed in (A) and the model best supported by the data. (C) As for (A) for DH lines 2400, 2123, 2264, 2349, 219, 2256 and

2173. (D) As for (B) for the DH lines listed in (C).

https://doi.org/10.1371/journal.ppat.1006702.g006
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displaying a bottleneck from 6 to 10 dpi, Fig 6B) and remained approximately constant in

the others (mostly in DH lines with lower, i.e.< 500, effective population sizes in the inocu-

lated organ, Fig 6D).

Heritability of the intensities of selection and genetic drift exerted by

plants on virus populations

By creating two dataset replicates of 24 randomly chosen plants for each DH line, we estimated

the heritability of two plant traits corresponding to the evolutionary forces exerted by the plant

on virus populations: selection and genetic drift. These forces were estimated by (i) intrinsic

rates of increase in viral variants and (ii) effective population sizes for PVY. With 24 plants in

each dataset, we used the function Ne(t) of model M2 with two parameters. In this approach,

we used the contrasting behavior of PVY populations, which were fixed and identical at the

time of inoculation in all plants, on different pepper genotypes to characterize the phenotype

of each host. Very high heritability estimates were obtained for the intrinsic rates of increase

(mean heritability over the five variant estimates: h2 = 0.94). Somewhat lower, but nevertheless

substantial heritability estimates were obtained for effective population size in the inoculated

organ (mean heritability, h2 = 0.64) and for effective population size during systemic infection

(mean heritability, h2 = 0.63). The details of the calculation are provided in S3 Text.

Discussion

Advances in sequencing technologies are revolutionizing the study of microbial evolution

[13]. To our knowledge, this study is, for example, the first to suggest such strong variability

in the selection and genetic drift regimes experienced by plant viruses in closely related host

genotypes (Fig 2). This new type of data paves the way for the estimation of population genet-

ics parameters influencing the fate of pathogen variants of special interest in medicine and

agriculture (e.g. variants resistant to pesticides and drugs [44] or, as in this study, variants

adapted to host resistance genes). However, estimation methods encompassing the whole

range of variation of these parameters are still lacking.

A method for estimating genetic drift and selection from microbial

experimental evolution

We present here a method for the estimation of selection and genetic drift in a haploid and

asexual organism, as modeled by a Wright-Fisher process. As for any model-based approach,

the population of interest must not be too far from an ideal Wright-Fisher population with

suitable parameters [10]. The estimation method did not require neutral markers. It was

validated for small effective population sizes (Ne� 100) and a wide range of both positive

and negative selection coefficients (weak (|s|’ 0.01) or strong (|s|’ 0.15) selection), using

simulated datasets. Recent reviews [23, 32] have highlighted the small number of methods

available for the inference of selection and genetic drift over the whole range of variation,

particularly in the case of small effective population sizes (Ne� 1000) and strong selection

coefficients (|s|’ 0.1). Indeed, these conditions do not fulfill the hypotheses underlying

most approximations of the Wright-Fisher model. The classical approximation, with a stan-

dard diffusion process, requires both selection and genetic drift to be weak [23]. Approxima-

tions based on Gaussian diffusion require the stochastic effects of genetic drift to decrease

more rapidly than the effects of selection [23]. The work of Foll et al. [11, 32] constituted a

major step forward, but their method requires a large proportion of the genetic markers

studied to be neutral. This assumption is not valid for many pathogens with small genomes,
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such as viruses. For example, only 22.7% of 66 randomly chosen mutations in the genome of

Tobacco etch virus (TEV, genus Potyvirus), a plant RNA virus, were found to be consistent

with neutrality [45]. As the statistical power to detect departure from neutrality is limited,

the true proportion of neutral mutations is probably much lower. Similar results have been

obtained for bacteria (e.g. [46]).

The estimation method proposed does not require neutral markers, an appealing feature

for studying pathogens with small genomes. Lacerda and Seoighe [47] recently developed

another method that does not require neutral markers. Their method provided satisfactory

estimates of both Ne and s (estimated at a single locus) for a relatively small effective popula-

tion size of 1000 individuals and values of s up to 0.5. They did not test the performance of

their method for Ne� 1000. By comparison, the method developed here was effective for

much lower Ne values, in the range of a few tens of individuals, and for inferring the time

course of Ne over a few tens of generations. However, although the range of selection coeffi-

cients s included cases of strong selection (|s|’ 0.1, as defined by Malaspinas [23]), none of

the simulation experiments included values as high as 0.5. It may be possible to infer such

high selection coefficients with the estimation method proposed, provided that the first

generations are sampled more densely, typically every day after inoculation in our set-up.

Lacerda and Seoighe [47], for example, used samples taken at each generation, for 20 genera-

tions. This makes it possible to record the trajectories of variant frequencies before variant

loss or fixation.

The use of the proposed estimation method requires observation of the evolution of isolated

populations derived from the same parental population, each population being sampled only

once. This design is particularly suitable for studying within-host microbial evolution when

several genetically-identical hosts (48 plants for each pepper genotype in our case study) can

easily be included in the experiment. With this experimental design, we observed a set of vari-

ant frequencies at several time points, in independent hosts. This set contained footprints of

selection and genetic drift. In the method developed, selection is evaluated from the mean tra-

jectories of variant frequencies. Genetic drift is evaluated at several time points, by assessing

differences in variant frequencies between the replicated populations during the time-course

of the experiment. Even for populations with small effective sizes, for which genetic drift and

selection have confounding effects on the fate of variants (Fig 2), a moderate number of repli-

cates contains sufficient information to disentangle the two mechanisms. Here, we estimated

four selection coefficients and four effective population sizes (i.e. 8 parameters) with 48 sam-

ples (6 sampling dates × 8 replicates).

The proposed estimation method could be improved further. It explicitly accounts for the

technical sampling noise resulting from the assessment of variant frequencies from finite

counts of virus sequences. However, HTS also introduces sequencing errors, albeit at a low

rate of about 1 substitution per 400 bases for MiSeq technology [48], which were not explicitly

accounted for in our framework. Several models have been proposed for separating true

genetic variation from technical artifacts [48], and these models could be integrated into the

method through a hierarchical Bayesian modeling framework [49], for example. Finally, the

method could be extended to take mutation and recombination into account, particularly for

experiments over longer periods, in which new variants might appear and displace those cur-

rently most abundant. In our short-term experiment, we have already observed de novo substi-

tutions in a few plants (removed plant samples, see S1 Text). The inclusion of recombination

is not relevant for our case study, as the nucleotide positions differentiating the variants are

located only a few codons apart. Recombination can thus be ignored in this study [50], particu-

larly given the small number of generations considered [32].
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Plant genotypes modulate genetic drift and selection within virus

populations

On the host side, our experiment involved 15 DH lines of pepper, all carrying the major resis-

tance gene pvr23, but differing in terms of their genetic backgrounds [12]. These DH lines

were derived from the F1 hybrid between two pepper lines, Perennial and Yolo Wonder. Con-

sequently, on average, any pair of DH lines have 50 percent of alleles in common for markers

differentiating between Perennial and Yolo Wonder. This is the first study, to our knowledge,

to show such a high level of diversity in selection and genetic drift regimes experienced by

virus populations from the same viral inoculum in closely related host genotypes (Fig 2, S2 and

S3 Figs). On the pathogen side, we used five virus variants: the G and N variants displayed

weaker adaptation to pvr23 than the K, GK and KN variants. The ranking of the selection coef-

ficients of the five variants was mostly identical in the 15 plant genotypes. We were therefore

unable to identify any host genotype, among those tested, able to counterselect against the

virus variants best adapted to pvr23. This may be due to (i) the strong selective effect exerted by

the major-effect resistance gene pvr23, which is present in all the DH lines studied here and

probably exceeds the additional selective effect of the plant genetic background and/or (ii) the

close genetic relatedness of the DH lines analyzed. Other genetic resources for pepper should

be explored, to identify genotypes capable of counterselecting against the K, GK and KN vari-

ants, which were the fittest in our study. The best candidates for this would be pepper geno-

types carrying pvr2 resistance alleles other than pvr23, with a different specificity in the face of

PVY diversity [51], or pepper genotypes devoid of resistance alleles at the pvr2 locus, as shown

by Quenouille et al. [12]. Combinations of plant genotypes exerting opposite selective pres-

sures on pathogen populations are particularly interesting for the sustainable management of

plant resistance at landscape level, and can be implemented in cultivar rotations, mixtures or

mosaics [52]. However, in our study, the difference in fitness between the weakest and fittest

variants differed between host genotypes. The dynamics of selection for the fittest variants

were under plant genetic control and could therefore be modulated by the choice of plant

genotypes grown. For example, growing the pepper DH lines with the smallest differential

selection between the five PVY variants would be particularly useful for delaying PVY adapta-

tion in pvr23-carrying plants, in which a two-step mutational trajectory may be required [12].

Indeed, the G and N variants are most likely to appear initially, because they require transi-

tions, whereas the K variant requires a transversion, and transitions are more frequent than

transversions [53]. However, an additional substitution, in a second step, is required to confer

a sufficient level of fitness for the emergence of GK and KN variants. These mutational trajec-

tories were observed in PVY adaptation to the Perennial pepper genotype, the resistant parent

of all the DH lines studied here [12].

We also inferred the time course of the genetic drift experienced by the viruses in the 15

host environments during the experiment. Genetic drift intensities were highly variable with

time and between plant genotypes, revealing an unprecedented level of variability between

closely related host genotypes. Our estimates of Ne(t) ranged from 18 to 462 just after the colo-

nization of apical leaves at 10 dpi, and from 13 to 1515 in the inoculated leaves four days previ-

ously (at 6 dpi). Eight of the 15 DH lines displayed a high Ne in the inoculated leaves at 6 dpi

(from 421 to 1515), a decrease at 10 dpi (Ne (10 dpi) values of 1.5 to 83.5% of the value at 6 dpi)

and a subsequent increase (Fig 6B). This pattern suggests a founder effect, in which a new PVY

population in apical leaves is set up by a few members of the original population in the inocu-

lated leaf. In the remaining seven DH lines, the Ne of the inoculated leaves at 6 dpi was much

lower (from 13 to 462), and Ne values often remained low in the apical leaves (Fig 6D). How-

ever, an increase in Ne was observed in DH lines 219 and 2173, after 14 dpi. This result sheds
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new light on the importance of the within-host bottlenecks experienced by virus populations,

as discussed in a recent article by Zwart et al. [54], who reported that the Ne of TEV in the first

systemically infected leaf of tobacco plants was determined largely by inoculum viral load.

They then hypothesized that genetic drift occurred mostly during the inoculation process. Pre-

vious estimations of Ne for viruses did not focus on Ne dynamics at the whole-plant level as in

this study. Instead, they considered the multiplicity of infection (MOI) during cell-to-cell

movement or Ne during the colonization of apical leaves (for a comprehensive review, see

Gutiérrez et al. [4]). Direct comparisons with these studies are, therefore, not appropriate.

Gutiérrez et al. [55] recently showed that Turnip mosaic virus (genus Potyvirus) infections are

characterized by a very low MOI (’ 1) when cells are infected with virus particles moving in

the plant vasculature, and a much higher MOI (’ 30) during subsequent cell-to-cell move-

ment in the mesophyll. The general picture that emerges when we consider both these MOI

patterns and plant growth dynamics is consistent with our observations. Indeed, the lowest Ne

values were observed at 10 dpi, corresponding to the onset of systemic infection, when plants

were small and consisted essentially of a few infected leaves. Ne tends often to increase with

time, because (i) increasing numbers of leaves are infected and behave as virus sources as the

plant grows and (ii) leaf areas increase, probably increasing the relative proportion of cell-to-

cell, as opposed to long-distance, virus movement.

One of the key results of this study is the finding that the effective population size of PVY is

a heritable plant trait. The high heritability estimated for Ne (partially due to the use of a DH

progeny of pepper genotypes) indicates that plant resistance could potentially be improved

through breeding programs. Indeed, our findings pave the way for the breeding of plant culti-

vars exposing viruses to greater genetic drift. This would provide a twofold benefit against

viruses. First, in asexual populations, genetic drift favors the accumulation of deleterious

mutations, decreasing viral fitness (Muller’s ratchet) [56]. Second, genetic drift decreases the

fixation probability of beneficial mutations, such as those responsible for overcoming plant

resistance genes [57]. Breeding for greater genetic drift in virus populations would thus consti-

tute a novel approach to increasing the durability of resistance to plant viruses in agricultural

landscapes [52, 58, 59]. Another key result is the finding that the Wright-Fisher model accu-

rately captures the major processes driving the within-host dynamics of a set of virus variants

(Fig 5), despite being much simpler than the underlying mechanisms involved in the infection

of highly structured hosts. Over longer periods, mutation and recombination increase in

importance and this can easily be encompassed in the Wright-Fisher model [60]. This model

can thus serve as a valuable cornerstone for linking the within- and between-host scales of dis-

ease dynamics and studying, for example, how breeding for greater genetic drift can delay the

emergence of a new pathogen variant.
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S1 Text. Sequence analyses to detect PVY mutations.

(PDF)

S2 Text. Numerical experiments.

(PDF)

S3 Text. Heritability of the intensity of selection and genetic drift exerted by plants on

virus populations.
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S1 Fig. Resistance-breakdown (RB) frequency, viral accumulation and mean number of

primary infection foci for the 15 DH lines studied. Pepper genotypes are represented as
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points, with their nomenclature (DH line number) given above each point. We estimated the

mean number of primary infection foci for the 15 DH lines with the Potato virus Y (PVY,

genus Potyvirus) variant K, carrying a green fluorescent marker (green fluorescent protein,

GFP) [34]. The resistance-breakdown (RB) frequency and the relative viral accumulation

were estimated by Quenouille et al. [12]. The RB frequency corresponds to the percentage

of infected plants when inoculated with an avirulent variant regarding the allele of resistance

pvr23, carried by all DH lines. The relative viral accumulation, or relative viral concentration,

was measured by double antibody sandwich enzyme-linked immunosorbent assay (DAS-E-

LISA).

(PDF)

S2 Fig. Five datasets obtained by high-throughput sequencing in the biological experiment.

Each line of bar plots represents the dynamics of virus variants in a single DH line over time:

(A) 221, (B) 2123, (C) 2173, (D) 2256 and (E) 2264. Within each bar plot, the frequencies of

the five variants (see top of the figure for the color code) in each infected plant sample are rep-

resented by single bars (labeled from 1 to 48). The missing bars correspond to plant samples

for which no viruses were detected. The last bar indicates the mean viral composition in the

infected plants. Each individual bar plot corresponds to a single sampling date, indicated at the

top of each column of barplots.

(PDF)

S3 Fig. Five datasets obtained by high-throughput sequencing in the biological experiment.

Each line of bar plots represents the dynamics of virus variants in a single DH line over time:

(F) 2328, (G) 2349, (H) 2367, (I) 2400 and (J) 2426. Within each bar plot, the frequencies of

the five variants (see top of the figure for the color code) in each infected plant sample are rep-

resented by single bars (labeled from 1 to 48). The missing bars correspond to plant samples

for which no viruses were detected. The last bar indicates the mean viral composition in the

infected plants. Each individual bar plot corresponds to a single sampling date, indicated at the

top of each column of barplots.

(PDF)

S4 Fig. Variability of the selection and genetic drift regimes obtained among the simulated

datasets in numerical experiment 1. In the diagonal, each histogram represents the distribu-

tion of input parameters r1 (intrinsic rate of increase of variant 1), NIO
e (effective population

size in the inoculated organ) and NS1
e (effective population size at the onset of the systemic

infection) used to simulate the 750 datasets. Off-diagonal scatter plots are two by two combina-

tions of parameters.

(PDF)

S1 Table. Tag sequences used to distinguish each plant sample after pooling and MiSeq

Illumina high-throughput sequencing. The forward (Fwd.) primer sequence was the same

for all amplifications and was bound to the sequence tag, just after it. Its binding site corre-

sponds to positions 5971 to 5990 of PVY isolate SON41p (accession number AJ439544). The

binding site of the reverse (Rev.) primer sequence corresponds to positions 6095 to 6114 of

PVY isolate SON41p. RT-PCR amplifications were done according to the following profile: 1h

at 42˚C, 10 min at 95˚C, 35 times the following sequence (45s at 95˚C, 30s at 50˚C and 20s at

72˚C) and finally 10 min at 72˚C.

(PDF)

S2 Table. Number of sequences and composition of the virus populations in each sample

of the biological experiment. In all, 708 samples were analyzed: 15 doubled-haploid (DH)

Estimation of genetic drift and selection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006702 November 20, 2017 21 / 25

http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1006702.s005
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1006702.s006
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1006702.s007
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1006702.s008
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1006702.s009
https://doi.org/10.1371/journal.ppat.1006702


lines of pepper × 6 sampling dates (dpi: days post-inoculation) × 8 plants per date, except for

virus-negative samples, and 4 samples for the initial inoculum. Columns indicate (i) the name

of each DH line, (ii) the sampling date in dpi, (iii) the number of the sequence tag used (see S1

Table), (iv) the plant number (as in Fig 2, S2 and S3 Figs), (v) the infection status of each sam-

ple (0: not infected / 1: infected), (vi) the total number of cleaned sequences of variants G, N,

K, GK and KN assigned to each sample after filtering, (vii-xi) the number of sequences for

each inoculated viral variant (G, N, K, GK and KN), and (xii-xiv) the number of sequences of

the three additional variants SON41p, GN and GKN, based on the three codon positions of

interest in the VPg cistron.

(XLSX)

S3 Table. Estimations of the relative intrinsic rates of increase of the virus variants for the

15 plant genotypes. Virus variants are indexed as follows: (i) r1 virus variant G, (ii) r2 virus

variant N, (iii) r3 virus variant K, (iv) r4 virus variant GK, (v) r5 virus variant KN. The 90% con-

fidence intervals are calculated as r̂i � 1:645:ŝi .

(PDF)

S4 Table. Model selection and estimations of the effective population sizes for the 15 plant

genotypes. The posterior probabilities of the four models considered for the piecewise func-

tion describing the temporal variation of the effective population sizes during the time course

of the experiment (models M1, M2, M3 and M4) are first indicated. The bold value corre-

sponds to the model that is best supported by the data. The next columns indicate the estima-

tion of the effective population sizes of the model selected and the extent of the 90% credibility

intervals.

(PDF)
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