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Abstract

In this paper, we construct a model to describe the evolutionary epi-
demiology of spore producing asexual plant pathogens in a homogeneous
host population. By considering the evolution in the space of the pathogen
phenotypic values, we derive an integro-differential equation with nonlo-
cal mutations terms. Our first main result is concerned with the existence
and uniqueness of the endemic steady state of the model. Next assuming
that the mutation kernel depends on a small parameter ε > 0 (the vari-
ance of the dispersion into the space of the pathogen phenotypic values),
we investigate the concentration properties of the endemic steady state
in the space of phenotypic values. In the context of this work, several
Evolutionary Attractors (as defined in classical adaptive dynamics) may
exist. However, in rather general situations, our results show that only one
Evolutionary Attractor persists when the populations are at equilibrium
and when ε is small enough. Our analysis strongly relies on a refined de-
scription of the spectral properties of some integral operator with a highly
concentrated kernel. We conclude the paper by presenting some numerical
simulations of the model to illustrate this concentration phenomenon.

1 Introduction

The objective of this paper is to analyse the concentration property, in the space
of phenotypic values, of the steady state solutions of an integro-differential model
representing the evolutionary epidemiology of spore producing plant pathogens,
typically fungal leaf pathogen. Fungi are the most frequent agents of plant
disease in natural ecosystems and major causal agents of crop damage [35].
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The inspiration of the current model was motivated by the emergence, during
the last decade, of a trend in mathematical epidemiology aiming to integrate
in the same modelling framework previously separate approaches dedicated, on
one side, to model epidemic and, on the other side, to model evolution ([33]).
This approach was first proposed by Day and Proulx in [5] and re-explained
in different contexts by Day and Gandon in [4]. Essentially, this analytical
framework is inspired by quantitative genetics. It can be used to monitor the
simultaneous dynamics of epidemics and dynamics of evolution of any pathogen
life-history trait of interest. This is a major issue for public health policies
but also for plant health management in agro-ecosystems. Indeed, similarly
to Darwinian medicine ([33]), the sustainable management of plant disease has
two distinct but interdependent goals : ”an immediate epidemiological one of
reducing the incidence, severity and frequency of disease epidemics and a longer-
term evolutionary one of reducing the rate of evolution of new patho-types”
([41]). The longer-term evolutionary goal aims for example to preserve the
efficiency of disease resistance genes used in cultivated plant varieties (cultivar).

In this work, we use a system of integro-differential equations to model
both the epidemiological and the evolutionary dynamics of spore-producing
pathogens in a homogeneous host population. The host population is subdivided
into two compartments, Susceptible or healthy host tissue (S) and Infected tis-
sue (i). Healthy tissue is transformed into infected tissue with the arrival and
successful germination of a single fungal spore from the spore pool compartment
(A). The host population does not represent individual plants, but rather leaf
area densities (leaf surface area per m2). The leaf surface is viewed as a set of
individual patches corresponding to a restricted host surface area that can be
colonized by a single pathogen individual [17].

The model considers a continuum of different pathogen strains. It allows for
example to tackle the issue of pathogen adaptation to quantitative resistance.
This is important as up to now, most theoretical works deal with the adaptation
of plant pathogen to qualitative resistance (see for example [27, 38, 29, 13,
11, 12, 32]). On quantitatively resistant hosts, parasite exhibit a continuous
distribution of their disease phenotype ([23, 37]): all the pathogen strains cause
infection but each with its own level of quantitative pathogenicity [22, 41]. From
the pathogen side, the adaptation to quantitative resistance is thus characterized
by a gradual increase of the pathogenicity levels. From the host side, this
process leads to a gradual erosion of the efficiency of quantitative resistance
[23]. More specifically, in the model, each pathogen strain is characterized by its
phenotypic value which affects the life-history traits of the pathogens expressed
during the basic steps of the host-pathogen interaction: (i) infection efficiency
(probability that a spore deposited on a receptive host surface produces a lesion),
(ii) latent period (time interval between infection and the onset of sporulation),
(iii) sporulation rate (amount of spore produced per lesion and per unit time)
and (iv) infectious period (time from the beginning to the end of sporulation).
We consider an asexually reproducing pathogen: the evolution in the space
of phenotypic values is thus modeled with an integral operator with kernel m
describing mutations from a pathogen strain with phenotypic value y ∈ RN to
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another one with phenotypic value x ∈ RN .
The model we shall consider in this work reads as the following non-local

age structured system of equations posed for t > 0, age since infection a > 0
and phenotypic value x ∈ RN , for some integer N ≥ 1,

∂tS(t) = Λ− µS(t)− S(t)

∫
RN

β(y)A(t, y)dy,

(∂t + ∂a) i(t, a, x) = −µi(t, a, x),

i(t, 0, x) = β(x)S(t)A(t, x),

∂tA(t, x) =

∫
RN

∫ ∞
0

m(x− y)r(a, y)i(t, a, y)dady − δA(t, x).

(1.1)

Here S(t), i(t, a, x) and A(t, x) respectively denote the density of healthy tis-
sue, the density of infected tissue since the time a > 0 by the pathogen with
phenotypic value x ∈ RN , and the density of airborne spores of pathogens with
phenotypic value x. The parameters Λ > 0, µ > 0 and δ > 0 respectively
represent the influx of new healthy host tissue, the death rate of the host tis-
sue and the deposition rate of spores. The function m stands for the mutation
kernel and describes the dispersion into the space of phenotypic values at each
pathogen generation. The function β = β(x) describes the infection efficiency of
the pathogen while the age specific function r = r(a, x) combines the life-history
traits describing host-pathogen interaction: the sporulation rate, the latent pe-
riod and the infectious period. The precise assumptions on these functions will
be specified latter. Typically it takes the form

r(a, x) = p(x)1[τ(x),τ(x)+l(x)](a),

where p, τ and l denote the strain specific sporulation rate, latent period and
infectious period respectively. Here 1[τ(x),τ(x)+l(x)] is the indicator function such
that r(a, x) = p(x), if a ∈ [τ(x), τ(x) + l(x)] and 0 elsewhere.

The formulation of Problem (1.1) assumed that there is no disease induced
mortality of infected lesions. As it will be discussed further below, this model
is particularly well adapted for the description of biotrophic host-pathogen in-
teractions, for which the pathogens require a living host for their development.
But, a more general model formulation including disease induced mortality will
also be discussed in Section 3.

Model (1.1) appears, in a slightly different form, in [17] where the authors
studied the evolutionary adaptation of a pathogen to quantitative resistance.

In this work we shall focus on the study of the stationary states of (1.1).
We shall more specifically investigate the concentration properties in the space
of phenotypic values of these stationary states when the mutation kernel m
depends on a small parameter ε > 0 and is highly concentrated. We shall more
specifically assume that it takes the form

m(x) = mε(x) := ε−Nm
(x
ε

)
, ∀x ∈ RN . (1.2)
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Here the small parameter ε models the small variance of the dispersion into the
space of phenotypic values. Note also that this do not imply that mutations are
rare since they arise at each life cycle of the pathogen.

The formal limiting system with ε = 0 fully uncouples the different locations
in the phenotypic trait space and it takes the form

∂tS(t) = Λ− µS(t)− S(t)

∫
RN

β(y)A(t, y)dy,

(∂t + ∂a) i(t, a, x) = −µi(t, a, x),

i(t, 0, x) = β(x)S(t)A(t, x),

∂tA(t, x) =

∫ ∞
0

r(a, x)i(t, a, x)da− δA(t, x).

Under specific assumptions on the model parameters, that will be provided
in Assumptions 2.1 and 2.2 below, the above system of equations may admit
an infinite number of endemic stationary states, in particular if the following
threshold condition is satisfied

T 0
0 :=

Λ

µ
‖Ψ‖∞ > 1,

with
Ψ(x) =

β(x)

δ

∫ ∞
0

r(a, x)e−µada. (1.3)

This function Ψ will be referred below as the fitness function. Here we will
show that, under suitable conditions, when ε > 0, then the coupling in the
phenotypic trait space is sufficiently strong to ensure the uniqueness of an en-
demic stationary state. Moreover, when ε is small enough, this endemic station-
ary state concentrates, in the trait space, on the points maximizing the fitness
function Ψ. And, more deeply, we shall show that, under biologically reason-
able assumptions, this concentration property selects a single trait (that will be
characterized) even if the maximal fitness is achieved at several trait locations.

Let us mention that concentration properties for continuously structured
models with small mutation in evolutionary dynamics have attracted a lot of
interest in the last decade. Diekmann et al. in [8] introduced an Hamilton-Jacobi
approach, roughly based on a suitable time rescaling argument and a change
of unknown function (usually called WKB ansatz), to study such concentra-
tion property in the phenotypic values space for a resource-consumer problem.
Such an approach has been fruitfully used to deeply understand the dynami-
cal behaviour of concentration points for various problems, including non-local
competition logistic equation and chemostat problem, involving small mutation
parameter. We refer for instance to [6, 25, 26, 30] and the references cited
therein. We also refer to [2] and the references therein for some results on the
long time behaviour concentration for some non-local logistic like equation. Let
us also mention the work of Calsina et al. in [3] where the authors formulate and
study a selection mutation equation with a continuous phenotypic evolutionary
trait and a non-local mutation operator. In this work, the authors prove a con-
centration property for the steady state solutions of their problem when the
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mutation rate is a small parameter, that is when the time scale for mutations is
slower than the selection phenomena. They provide a refined description of the
asymptotic profile for these steady states and show that their asymptotic pro-
file is a Cauchy distribution. Note that the context of the aforementioned work
is rather different from the one considered in this note. Indeed, as mentioned
above, we do not assume a slow time scale for the mutation processes but a small
variance of the dispersion into the phenotypic values space due to mutations at
each life cycle of pathogens. In Gudelj et al. [14], the authors study the effect of
small mutation on the phenotypic evolution of a pathogen population, modelled
by a diffusion, coupled with the host heterogeneity. Depending on the trade-
off relationship between the transmission rates on two host populations, using
formal asymptotics expansions, the authors determine the maximum number of
phenotypes a pathogen population can support in the long term.

In this work, our analysis of the steady states of Problem (1.1) relies on the
spectral properties of the integral operator (involving the fitness function Ψ)

Lϕ(x) =

∫
RN

m(x− y)Ψ(y)ϕ(y)dy, (1.4)

and a refined analysis of its counterpart with small parameter ε, that reads as
the same operator with m replaced by mε. Such study follows some arguments
proposed by Helffer and Sjöstrand in [16] (see also [20, 34] and the references
therein). Let us mention here that we will not assume that the mutation kernel
has very fast decay at infinity. We allow fat tail’s dispersion with fractional
exponential decay rate restriction (see Assumption 2.5 (i) below). In that set-
ting, one of the key point argument relies on the derivation of rather fast decay
estimates for the eigenvectors of some integral operator.

This manuscript is organized as follows. In Sections 2-3 we state and discuss
the main results that will be obtained in this work. Section 4 is devoted to the
derivation of simple conditions ensuring the existence of a principal eigenvalue
for some non-local operator. Section 5 investigates preliminary spectral esti-
mates. Section 6 is devoted to the derivation of eigenvector decay estimates.
Finally Section 7 completes the proof of the main results of this work, that deal
with the asymptotic expansion of some principal eigenvalue and the concentra-
tion property of the associated principal eigenvector.

2 Main results

In this section we state the main results that will be proved in this work.
Our first main result is concerned with the existence and uniqueness of

the endemic steady state of (1.1). Let us observe that (S, i, A) ∈ (0,∞) ×
L1

+

(
(0,∞)× RN

)
× L1

+(RN ) is a stationary state of (1.1) iff it satisfies
∫
RN

m(x− y)Ψ(y)A(y)dy =
1

S
A(x),

Λ− µS = S

∫
RN

β(y)A(y)dy and i(a, x) = β(x)SA(x)e−µa.
(2.5)
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Hence, the term 1
S appears as an eigenvalue of the linear integral operator L

given by the left hand side of the first equation of (2.5), namely defined as in
(1.4) and where the fitness function Ψ is defined by (1.3).

Therefore the study of the stationary states of (1.1) strongly relies on the
spectral properties of the operator L defined by (1.4).

Before stating our existence result, we shall first state the set of assumptions
that will be needed to study the existence of stationary states for (1.1).

Assumption 2.1 (Fitness function) We assume that Λ, µ and δ are given
positive parameters. The functions β = β(x) and r = r(a, x) respectively belong
to L∞+

(
RN
)

and L∞+
(
(0,∞)× RN

)
. And, the function Ψ : RN → R+, defined

in (1.3), is assumed to be continuous on RN . It furthermore satisfies Ψ 6≡ 0 and

lim
‖x‖→∞

Ψ(x) = 0.

Assumption 2.2 (Mutation kernel) The mutation kernel m : RN → R sat-
isfies

(i) m ∈ L1(RN ) ∩ L∞(RN ) is non-negative, symmetric with respect to the ori-
gin, that is m(−x) = m(x) a.e. in RN and it has a unit mass, that is∫
RN m(x)dx = 1.

(ii) The function m is almost everywhere strictly positive.

(iii) For each R > 0 the function MR : x 7→ sup
‖y‖≤R

m (x+ y) belongs to L1(RN ).

In order to state our existence result for an endemic stationary state, let us
introduce further notation. We set

Ω =
{
x ∈ RN : Ψ(x) > 0

}
and Θ(x) ≡ Ψ

1
2 (x), (2.6)

and we introduce the functional ρ = ρ[m] defined by

ρ[m] = sup
ϕ∈L2(Ω)
‖ϕ‖L2(Ω)=1

∫∫
Ω×Ω

Θ(x)Θ(y)m(x− y)ϕ(x)ϕ(y)dxdy. (2.7)

Together with this notation, the first main result reads as follows.

Theorem 2.3 Let Assumptions 2.1 and 2.2 be satisfied. Define the number T0

by

T0 =
Λ

µ
ρ[m]. (2.8)

When T0 ≤ 1, then System (1.1) has a unique equilibrium point
(
S0, i0, A0

)
defined by (

S0, i0, A0
)

=

(
Λ

µ
, 0, 0

)
.
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When T0 > 1, then System (1.1) has two different equilibrium points
(
S0, i0, A0

)
defined as above and (S∗, i∗, A∗), where the components satisfy

0 < S∗ < S0, A∗ ∈ L1(RN ) ∩ L∞(RN ) with A∗ > 0 a.e.,

and i∗(a, x) = β(x)S∗A∗(x)e−µa.

As mentioned above the proof of the above result, namely Theorem 2.3,
strongly relies on the spectral properties of the operator L. The set of assump-
tions stated above will, in particular, ensure the existence of a principal eigenpair
for the operator L. In view of the definition of the threshold T0 and System
(2.5), we shall also prove that the quantity ρ[m] corresponds to the principal
eigenvalue of the operator L.

We now assume that the mutation kernel m depends upon a small parameter
0 < ε << 1. It is now denoted by mε and takes the form of (1.2).
We aim at describing the behaviour as ε→ 0 of the endemic equilibrium point
(S∗ε , i

∗
ε, A

∗
ε) of System (1.1) when m is replaced by mε. We shall more specifically

be interested in describing the concentration properties of the function A∗ε, that
arises as the principal eigenvector of the linear operator Lε defined by

Lεϕ(x) =

∫
RN

mε(x− y)Ψ(y)ϕ(y)dy. (2.9)

The behaviour, as ε→ 0, of the endemic steady state of System 1.1 will follow
from a detailed analysis of the principal eigenpair of the above linear integral
operator, as ε → 0. We will first collect some results related to the principal
eigenpair of operator Lε. Note that the existence and basic properties of the
principal eigenpair will be ensured by Theorem 4.1 below. Then, as a corollary,
we shall describe the behaviour of the endemic equilibrium of System (1.1) as
ε→ 0.

To perform our analysis we shall need to impose more assumptions than the
ones stated in Assumptions 2.1 and 2.2. In addition to these assumptions, we
assume that

Assumption 2.4 In addition to Assumption 2.1, we assume that

(i) The function Θ = Ψ
1
2 is of the class C∞ on RN .

(ii) There exists a finite number of points
{
x0

1, .., x
0
M

}
⊂ RN such that{

x ∈ RN : Ψ(x) = ‖Ψ‖∞
}

=
{
x0

1, .., x
0
M

}
,

and for all k = 1, ..,M , the Hessian matrix −D2Θ
(
x0
k

)
is positive definite.

Assumption 2.5 In addition to Assumption 2.2, the kernel function m arising
in (1.2) satisfies the following properties:

(i) There exist some constants M0 > 0, η0 > 0 and γ0 ∈ (0, 1) such that

m(x) ≤M0 exp (−η0‖x‖γ0) , a.e. x ∈ RN .
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(ii) The covariance matrix Σ[m] of the probability measure m(x)dx is positive
definite. Here recall that Σ[m] = (Σi,j)i,j=1,..,N is defined by

Σi,j =

∫
RN

yiyjm(y)dy, i, j = 1, .., N.

Let us observe that Assumption 2.5 (i) implies in particular that Assumption
2.2 (iii) is satisfied. Moreover this assumption means that the dispersion decays
rather fast at infinity but without being a thin tail kernel. This assumption
allows a class of fat tail dispersal kernel. As a consequence, the Fourier transform
of the kernel m cannot be analytically extended on a complex strip around the
real axis, namely of the form {z ∈ C : |=(z)| ≤ ν} for some positive ν. This
prevents us from using the methodology developed in [28, 21, 34] to derive
Agmon type decay of the eigenvectors.

As discussed above we are concerned with properties of the principal eigen-
pair (see Theorem 4.1 below) of the operator Lε for small 0 < ε << 1, that is
of the solution of the problem

Lεψε(x) = λεψε(x) with ψε ∈ L1(RN ) ∩ L∞(RN ) and ψε > 0 a.e. (2.10)

Now we shall observe that, due to Assumption 2.5, one may reduce (and sim-
plify) our next statements and computations to the case where the covariance
matrix of the mutation kernel reads as 2IN , where IN denotes the N×N -identity
matrix. Indeed if (λε, ψε) denotes a solution of (2.10), then the pair (ρε, ϕε),
with

ρε =
1

‖Ψ‖∞
λε and ϕε(x) = ψε

(√
2

2
Σ[m]

1
2x

)
,

becomes a solution of the following linear problem
1

εN

∫
RN

m̂

(
x− y
ε

)
Ψ̂(y)ϕε(y)dy = ρεϕε(x), a.e. x ∈ RN ,

ϕε ∈ L1(RN ) ∩ L∞(RN ) and ϕε > 0 a.e..

Here, setting Σ = Σ[m] for notational simplicity, we have set

m̂(x) = 2−
N
2

√
det(Σ)m

(√
2

2
Σ

1
2x

)
and Ψ̂(x) =

1

‖Ψ‖∞
Ψ

(√
2

2
Σ−

1
2x

)
.

(2.11)
Therefore the pair (ρε, ϕε) corresponds to a principal eigenpair of the operator

Lε with m and Ψ respectively replaced by m̂ and Ψ̂.
Observe furthermore that m̂ satisfies all the conditions stated in Assumptions
2.2 and 2.5 with Σ [m̂] = 2IN while the function Ψ̂ satisfies the conditions

described in Assumptions 2.1 and 2.4 together with ‖Ψ̂‖∞ = 1. In addition the
set of points {x0

j : j = 1, ..,M} becomes{
x̂0
j : j = 1, ..,M

}
=
{

Ψ̂ = 1
}

with x̂0
j =
√

2Σ
1
2x0

j , j = 1, ..,M. (2.12)
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Our first result is concerned with the asymptotic expansion, as an asymptotic
series, of the principal eigenvalue λε as ε → 0. In order to state our result, we
need to introduce further notation. Define for each j = 1, ..,M the (Hessian)
matrix Aj by

Aj = −D2Θ̂
(
x̂0
j

)
with Θ̂(x) = Ψ̂(x)

1
2 . (2.13)

Also denote by Pj , for j = 1, ..,M , the elliptic operator defined by

Pj := −∆ +
∥∥∥A 1

2
j x
∥∥∥2

, (2.14)

and we define, for any j = 1, ..,M , the function ϕ0,j by

ϕ0,j(x) = (2π)−
N
2

√
det(A

1
2

j ) exp

−‖A 1
2
j x‖2

2

 . (2.15)

Observe that ‖ϕ0,j‖L2(RN ) = 1 and Pjϕ0,j = tr
(
A

1
2
j

)
ϕ0,j for all j = 1, ..,M .

In addition to these notation and definitions, one defines, for any j = 1, ..,M ,
the sequences {ϕk,j}k≥0 ⊂ L2(RN ) and {λk,j}k≥0 ⊂ R by the following recur-
rence relation:

ϕ0,j is defined in (2.15) and λ0,j = −tr
(
A

1
2
j

)
,

and for k ≥ 1

ϕk,j ⊥ ϕ0,j and (Pj + λ0,j)ϕk,j = −
k−1∑
p=0

λk−p,jϕp,j +

k−1∑
p=0

Dj,k−pϕp,j . (2.16)

Here the symbol ⊥ is used to refer to orthogonality with respect to the usual
L2(RN )-inner product while the symbols Dj,p ∈ R [x, ∂x] denote, for any j =
1, ..,M and p ≥ 1, a differential operator that will be specified in (5.34) below.
However, at this stage, let us mention that these operators take the form

Dj,p =
∑

(α,β,γ)∈Ip

a
(α,β,γ)
j xα∂γ +

∑
(α,β)∈Jp

b
(α,β)
j xα, (2.17)

wherein the different coefficients can be expressed in the terms of the derivatives
of Θ̂ at x̂0

j as well as different moments of the kernel m̂. The sets of summation
index, Ip and Jp, depend on p but are independent of the point j. It is easy
to see, using Fredholm solvability condition, that the above defined sequence is
uniquely determined.

Using the sequences {λk,j}k≥0 for j = 1, ..,M , we shall define an order

relation on the set {1, ..,M}. For that purpose, let us recall that the set of
real sequences RN can be endowed by the usual (total) lexicographical order,
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denoted by �, and defined as follows: for any pair of sequences {an}n≥0 and
{bn}n≥0 one has

{an}n≥0 � {bn}n≥0 ⇔


either a0 < b0,

either ∃k ≥ 0, ap = bp ∀p = 0, .., k and ak+1 < bk+1,

or ap = bp, ∀p ≥ 0.

This total order for real sequences allows us to define the following total order
E on the set {1, ..,M} as follows: for any i, j ∈ {1, ..,M} one has

i E j ⇔ {λk,i}k≥0 � {λk,j}k≥0 . (2.18)

Consider the set M⊂ {1, ..,M} defined by

M = max ({1, ..,M},E) . (2.19)

Observe that M 6= ∅ since {1, ..,M} is finite and M is not necessarily reduced
to a single point. However, let us observe that if i 6= j belongs to M then
λk,i = λk,j for all k ≥ 0.

We are now able to state our next main result that is concerned with the
asymptotic expansion of the principal eigenvalue of the operator Lε. Our precise
result reads as follows.

Theorem 2.6 Let Assumptions 2.1, 2.2, 2.4 and 2.5 be satisfied. Let λε denote
the principal eigenvalue of operator Lε. Then λε admits the following asymptotic
series expansion as ε→ 0, for any j ∈M,

λε ∼ ‖Ψ‖∞

(
1 +

∞∑
k=0

ε1+kλ2k,j

)
, (2.20)

in the sense that, for any p ≥ 0 one has

1

‖Ψ‖∞
λε = 1 +

p∑
k=0

ε1+kλ2k,j +O
(
εp+2

)
as ε→ 0.

Our next result is concerned with a concentration property of the principal
eigenvector ψε of Lε as defined in (2.10). Our result reads as follows.

Theorem 2.7 Let Assumptions 2.1, 2.2, 2.4 and 2.5 be satisfied. Let us assume
that M = {i}. Consider the principal eigenvector ψε of Lε normalized so that
‖ψε‖L1(RN ) = 1. Then, for each ν ∈ (0, γ0), there exists η > 0 such that the
following concentration property holds true:∫

RN\B(x0
i ,ε

ν)
ψε(x)dx = O

(
exp

(
−ηεν−γ0

))
as ε→ 0.

In particular, one gets ψε → δx0
i

as ε→ 0 for the narrow topology. This means

that for any continuous function f ∈ C
(
RN
)

ones has

lim
ε→0

∫
RN

f(x)ψε(x)dx =

∫
RN

f(x)δx0
i

(dx) = f
(
x0
i

)
.
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We are now able to come back to the study of the stationary states of Sys-
tem (1.1) with m = mε given by (1.2). In that setting, the threshold quantity
T0 depends upon the small parameter ε. In order to emphasize such a depen-
dence, we shall denote it by T ε0 . Now recall that, according to Theorem 2.3, if
T ε0 > 1 then System (1.1) has a unique endemic equilibrium point, denoted by
(S∗ε , i

∗
ε, A

∗
ε). Then the above theorems, namely Theorem 2.6 and Theorem 2.7,

can be applied to obtain the following information on the asymptotic shape of
the endemic stationary state of Problem (1.1) as ε→ 0.

Corollary 2.8 Let Assumptions 2.1, 2.2, 2.4 and 2.5 be satisfied. Then the
threshold T ε0 satisfies

lim
ε→0
T ε0 = T 0

0 :=
Λ

µ
‖Ψ‖∞.

We furthermore assume that T 0
0 > 1 and that the function β is continuous on

RN . If M = {i} then the endemic steady state (S∗ε , i
∗
ε, A

∗
ε), that is well defined

for any ε > 0 small enough, satisfies the following asymptotic behaviour as
ε→ 0:

lim
ε→0

S∗ε =
1

‖Ψ‖∞
,

and for any continuous function f ∈ C(RN ), we also have

lim
ε→0

∫
RN

f(x)A∗ε(x)dx =
T 0

0 − 1

µβ (x0
i )
f
(
x0
i

)
,

and

lim
ε→0

∫
RN

f(x)i∗ε(a, x)dx =
T 0

0 − 1

µ
f
(
x0
i

)
e−µa in L1(0,∞) ∩ L∞(0,∞).

Remark 2.9 Assume that the trait is one-dimensional, namely N = 1 and that
the fitness function Ψ is symmetric. If M = {i, j} with i 6= j then, since the
principal eingevector is also symmetric, the endemic stationary state (equally)
concentrates on these two points and this yields a dimorphic steady state.

In order to comment the above let us assume that N = 1. In that case it is
easy to check that i, j ∈M if and only if

Θ(n)
(
x0
j

)
= Θ(n)

(
x0
i

)
, ∀n ∈ N.

From a biological point of view, if M = {i}; then in that case, when the
dispersal in the phenotypic trait space is small, namely ε << 1, the unique
(endemic) steady state of (1.1) concentrates on a single trait, i.e. the equilibrium
population is basically monomorphic.
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3 Discussion

In this section, we first introduce the notion of singular strategies and discuss
some numerical simulations of the model. These simulations illustrate how to
use the model to monitor the evolutionary epidemiology of spore producing
plant pathogens as introduced in [4, 5]. We also discuss (i) the link between
the pathogen fitness function Ψ and the well known basic reproduction number
R0 in the context of epidemiology and (ii) how the model can encompassed
the major trophic modes encountered in fungal parasitism. Throughout this
discussion we consider the term strategy to be a synonym for phenotypic value.

Singular strategies. In order to introduce some vocabulary from the adap-
tive dynamics literature, we shall consider a slightly simplified version of System
(1.1). Here we omit the age structure and we assume that the evolution of the
density of airborne spores is a fast process. In that context we re-write (1.1) as
follows 

∂tSε(t) = Λ− µSε(t)− Sε(t)
∫
RN

β(y)Aε(t, y)dy,

∂tIε(t, x) = β(x)Sε(t)Aε(t, x)−
(
µ+

1

l(x)

)
Iε(t, x),

Aε(t, x) =
1

δ

∫
RN

mε(x− y)p(y)Iε(t, y)dy.

(3.21)

Here we take into account the (strain-specific) duration of the sporulation pe-
riod, denoted by l(x), while p(x) denotes the (strain-specific) sporulation rate.

For the above model the fitness function Ψ takes the form

Ψ(x) =
β(x)p(x)

δ(µ+ 1/l(x))
,

and, the results presented in the previous section for (1.1) also hold true for the
above slightly different system of equations.
Here we assume that N = 1 (i.e. x ∈ R). Then it follows from classical
adaptive dynamics [8] that the growth rate of a rare mutant strategy, y, in the
resident x−population is given by the so-called invasion exponent defined by

fx(y) :=
(
µ+ 1

l(y)

)
(SxΨ(y)− 1). Herein Sx denotes the stationary solution of

(3.21) when ε→ 0 and the pathogen population is assumed to be monomorphic
(see (3.22) below). To see this, note that formally taking the limit ε → 0 into
(3.21), this system becomes

∂tS(t) = Λ− µS(t)− S(t)

∫
R
β(y)p(y)I(t, y)dy,

∂tI(t, x) =

(
µ+

1

l(x)

)
[S(t)Ψ(x)− 1] I(t, x),

so that with a monomorphic pathogen population, I(t, x) = I(t)δx, the previous
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system further simplifies and yields∂tS(t) = Λ− µS(t)− β(x)p(x)S(t)I(t),

∂tI(t) =

(
µ+

1

l(x)

)
[S(t)Ψ(x)− 1] I(t).

(3.22)

Hence the invasion of mutant strategy y into a resident x−population is given
by the following linearized equation with growth rate fx(y):

∂tIy(t) = fx(y)Iy(t).

Now the evolution of a trait x is then governed by the selection gradient
defined by

D(x) :=
∂fx
∂y

∣∣∣∣
y=x

=

(
µ+

1

l(x)

)
SxΨ′(x).

Equilibrium points of the adaptive dynamics (also called singular strategies)
are solutions of D(x∗) = 0. The classification of singular points involves second
order derivatives of the invasion exponent fx(y) by computing the following
coefficients (see [8, 10] and references therein):

c22 :=
∂2

∂y2
fx∗(x

∗); c12 = c21 :=
∂2

∂x∂y
fx∗(x

∗) and c11 := −(c22 + 2c12).

According to [8], a singular point x∗ is called Evolutionary Stable Strategy (ESS)
if c22 < 0 and Convergent Stable Strategy (CSS) if c12 + c22 < 0. Evolutionary
Attractor (EA) is then a strategy that is both ESS and CSS.

Coming back to (3.21), singular points are the solutions of D(x) = 0, that
is SxΨ′(x) = 0. Hence the singulars points are critical points of the fitness
function Ψ.
Now recalling the non-degeneracy hypothesis in Assumption 2.4, the points –
globally – maximizing the fitness function Ψ are then EA, so that the set of
global maximum points of the fitness function Ψ is contained in the EA-set.
Indeed, note that we have c22 =

(
µ+ l(x∗)−1

)
Sx∗Ψ

′′(x∗) < 0 and, since Sx =

Ψ(x)−1, c12 =
[
l′(x∗)Ψ(x∗)l(x∗)−2 −

(
µ+ l(x∗)−1

)
Ψ′(x∗)

]
Ψ(x∗)−2Ψ′(x∗) = 0,

for any points x∗ such that Ψ(x∗) = ‖Ψ‖∞.
In the context of this work, several evolutionary attractors (as defined above)

may exist. However, in rather general situations, our results show that only one
EA persists (at least at equilibrium) when ε is small enough. This persistence
property is described by using the setM (see (2.19)). For this reason, the points
inM will be referred throughout this discussion as Globally Stable Evolutionary
Attractor (GSEA for short).

Basic reproduction number. The basic reproduction number (usually
denoted by R0 ) is one of the most important concepts in epidemiology, [9,
40]. When there are no ’interactions’ in the phenotypic space of pathogens
(i.e. without mutations in Model (1.1): ε = 0 ) and using the next generation
operator approach as in [7, 18] we find the basic reproduction number. More
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specifically, the basic reproduction number R0(x) of the pathogen strain with
phenotypic value x is related to the fitness function Ψ(x) given in (1.3) as follows

R0(x) :=
Λ

µ
Ψ(x) =

Λ

µ
× β(x)p(x)e−µτ(x)

δµ

[
1− e−µl(x)

]
.

The above expression ofR0(x) aggregates all the quantitative traits of pathogenic-
ity of the disease cycle: infection efficiency (β(x)), latent period (τ(x)), sporu-
lation rate (p(x)) and infectious period (l(x)). It is a useful function combining
these basic life-history traits into a single fitness metric [39, 24]. In particular
R0 can be used to measure and compare the fitness of pathogens with different
quantitative traits, especially with different latent period. This is an important
point in the context of agricultural system as pointed in [22]. Generally, by
assuming that there is only one pathogen strain x∗ which maximizes R0, it’s
well known that x∗ will be the strongest (or dominant) strain. We refer for
example to [7] and references therein. However, the situation becomes more
complicated to characterise the strongest strain when at least two pathogen
strains maximize R0. By taking into account the mutation in the space of the
pathogen strains, the results obtained in this note allow us to do so. Roughly
speaking, by introducing a mutation kernel describing the dispersion into the
space of phenotypic values of pathogens, we provide a characterization of the
dominant strain even in the case of multiple strains maximizing R0. To end this
paragraph, we emphasize that the decay of the mutation kernel considered here
(namely Assumption 2.5 (i)) allows us to also consider some class of fat-tailed
mutation kernel. This assumption is interesting in biological context where mu-
tant offsprings can be significantly different from their progenitors at the first
mutation generation. See for example [19], where this point is also discussed.

Description of the model numerical simulation. Let us consider a field
where a pathogen population has become monomorphic (concentrated around
the phenotypic value x0) because, for example, a single plant cultivar has been
sown for a very long time. The simulations will describe the epidemiological
and evolutionary dynamics following the deployment of a new plant cultivar in
that field at time t = 0. Typically, this new cultivar is bearing a quantitative
resistance. The function Ψ describes the fitness of the pathogen population
on the cultivar considered. We set Ψ := πG(x1, σ1) + (1 − π)G(x2, σ2) where
G(xj , σj) states for the Gaussian function with expected value xj , with variance
σ2
j and π ∈ (0, 1). This implies that the pathogen population is essentially con-

stituted of two groups with dominant phenotypes x1 and x2 mixed in proportion
π (see Figure 1). It defines an adaptive landscape with two local fitness peaks
regrouping each individuals with close combinations of life-history traits.

From here, the simulations of the evolutionary epidemiology dynamics of the
model are divided in two parts: the case of single maximum for Ψ and the case
of at least two maximum points for Ψ. For all the simulations, the variance of
the dispersion into the space of phenotypic values is fixed to ε = 0.04.

Dynamics with a single global maximum point for the fitness func-
tion Ψ. Here the fitness function Ψ is maximized by a single phenotypic value
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x2, but a local maximum fitness also exists around x1 and is close to Ψ(x2)
(Figure 2 (a)). In this case x2 is the GSEA value (as defined in the Singular
strategies section of the Discussion). Accordingly, the simulation shows that
the pathogen population is concentrated around this phenotypic value x2 as the
time becomes large (see Figure 2 (b)). But, the transient dynamics before reach-
ing the GSEA value is also interesting: the pathogen population lives during
certain time around the initial dominant phenotypic value x0 and then shifts by
mutation and lives for a relatively long time around the local maximum fitness
x1. In our applied case study, the duration of the transient dynamics is the
time length needed for the complete erosion of the quantitative resistant culti-
var. It measures the durability of the quantitative resistance gene considered.
Said another way, this is the time length during which the quantitative resistant
cultivar introduced at t = 0 still reduce epidemic relatively to epidemic intensity
before its deployment.

Dynamics with at least two global maximum points for the fitness
function Ψ. Here, the fitness function is maximized by two phenotypic values
x1 and x2 (Figure 3 (a)). The natural question is: where will be the concen-
tration in the space of phenotypic values of the pathogens with the long time
dynamics? In other words, among these two EAs, which one will asymptotically
persist? In the configuration described in Figure 3 (a), the phenotypic values
x1 and x2 differ by their respective second derivative of the fitness function.
Namely, we have Ψ′′(x2) > Ψ′′(x1). According to the order defined in (2.18)
on the set of maximum points of the fitness function, x2 is the GSEA value.
The simulation shows the concentration around x2 in the large time behaviour
(Figure 3 (b)). Before reaching the GSEA value, the pathogen population lives
during certain time around the initial dominant phenotypic value x0 and then
shift by mutation and lives for a relatively long time around the EA value x1.
Notice that the time needed to reach the GSEA value is longer than the previous
case of a single maximum point for the fitness function (see Fig. 2 (c) compared
to Fig. 3 (c)). Indeed, the phenotypic value x1 is much more ’close’ to the
GSEA value x2 than previously in the sense that here we have Ψ(x1) = Ψ(x2),
which was not the case before.

Another configuration is the case where we cannot ’classify’ the two global
maximum points x1 and x2 of the fitness function by using their second deriva-
tive, namely Ψ′′(x1) = Ψ′′(x2). In this situation, we have to compute the higher
order derivatives of the fitness function to determine the GSEA values using the
total order provided by (2.18).
In the case of symmetric configuration of the fitness function with respect to
the phenotypic values x1 and x2, the system admits two GSEA values and, in
that special case, the pathogen population equally concentrates on these two
GSEA values and leading to a dimorphic pathogen population (see Figure 4
and also Remark 2.9). In more general setting with non-symmetric configura-
tion and two GSEAs, we are not able to describe the concentration property
of the solutions. We suspect that the pathogen population may be dimorphic
with, possibly, different proportion for each GSEA.

Disease induced mortality of infected host tissue. Plant pathogens
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can be classified by their feeding relationships with their host: necrotrophs,
biotrophs and hemibiotrophs [15]. The necrotrophs have to kill host tissues
and then obtain food from the dead plant material. The biotrophs require
a living host for nutrition and to successfully complete their life cycle. The
hemibiotrophs combine both a biotrophic and a necrotrophic mode of nutrition.
Typically there is a relatively short biotrophic phase followed by necrotrophy
and the development of necrotic lesions.

Our model formulation in (1.1) assumed that there is not disease induced
mortality of infected lesions, i.e. the pathogen considered is essentially biotrophs.
But, notice that the model can encompass the other major trophic modes
(necrotrophs and hemibiotrophs) encountered in fungal parasitism by taking
into account the disease induced mortality. Actually, the i-equation of Model
(1.1) can be written as

(∂t + ∂a) i(t, a, x) = −(µ+ d(a, x))i(t, a, x);

wherein d(a, x) is the disease induced mortality of the infected tissue by pathogen
with phenotypic value x and which is infected since the time a. By taking into
account the disease induced mortality of the infected tissue, the preceding re-
sults of this note remain true with the following fitness function

Ψ(x) =
β(x)

δ

∫ ∞
0

r(a, x) exp

(
−µa−

∫ a

0

d(σ, x)dσ

)
da.

Figure 1: An adaptive landscape with two local fitness peaks. The fitness func-
tion Ψ of the pathogen population is described by a Gaussian mixture model:
Ψ := πG(x1, σ1) + (1 − π)G(x2, σ2), wherein G(xj , σj) states for the Gaussian
function with expected value xj , with variance σ2

j and π ∈ (0, 1). This im-
plies that the pathogen population is essentially constituted of two groups with
dominant phenotypes x1 and x2 mixed in proportion π.
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Figure 2: Epidemiological and evolutionary dynamics of a spore producing
pathogen with a single global maximum point for the fitness function. (a)
The fitness function Ψ and the density of pathogen population at time t = 0
with respect to the phenotypic value space. The fitness function is maximized
by a single phenotypic value x2 and has a local maximum at x1. In this case,
x2 is the GSEA (Globally Stable Evolutionary Attractor) value. (b) Joint epi-
demiological and evolutionary dynamics of infectious tissues with respect to
the phenotypic value space. Initially (at t = 0), the pathogen population is
essentially concentrated around the phenotypic value x0. Then the graph dis-
plays how the density of infected tissue and the phenotypic composition of the
pathogen population change jointly on the same time scale. The long time
dynamics illustrates the concentration of the pathogen population around the
GSEA value x2. Before reaching the phenotypic value x2, the pathogen popula-
tion lives during certain time around the initial dominant phenotypic value x0

and then shift by mutation and lives for a relatively long time around the local
maximum fitness x1. (c) Same as for (b) but without logarithmic time scale.
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Figure 3: Epidemiological and evolutionary dynamics of a spore producing
pathogen with two global maximum points for the fitness function. (a) The
fitness function Ψ and the density of pathogen population at time t = 0 with
respect to the phenotypic value space. The fitness function is maximized by
two EAs (Evolutionary Attractors) x1 and x2. The phenotypic values x1 and
x2 differ by their respective second derivative of the fitness: Ψ′′(x2) > Ψ′′(x1).
According to the order defined in (2.18) on the set of maximum points of the
fitness function, x2 is the GSEA (Globally Stable Evolutionary Attractor) value.
(b) Joint epidemiological and evolutionary dynamics of infectious tissues with
respect to the phenotypic value space. Evolutionary epidemiology dynamics of
infectious tissues with respect to the phenotypic value space. Initially (at t = 0),
the pathogen population is essentially concentrated around the phenotypic value
x0. The long time dynamics illustrates the concentration of the pathogen pop-
ulation around the GSEA value x2. Before reaching the phenotypic value x2,
the pathogen population lives during certain time around the initial dominant
phenotypic value x0 and then shift by mutation and lives for a relatively long
time around the phenotypic value x1. (c) Same as for (b) but without logarith-
mic time scale. Observed that, the time to reach the GSEA value is longer than
the case of Figure 2 with a single maximum point for the fitness function.
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Figure 4: Epidemiological and evolutionary dynamics of a spore producing
pathogen in the case of symmetric configuration of the fitness function. (a)
The fitness function Ψ and the density of pathogen population at time t = 0
with respect to the phenotypic value space. We have a symmetric configuration
of the fitness function with respect to the phenotypic values x1 and x2. Thus, ac-
cording to the order defined in (2.18) on the set of maximum points of the fitness
function, both phenotypic values x1 and x2 are GSEA (Globally Stable Evolu-
tionary Attractor) values. (b) Joint epidemiological and evolutionary dynamics
of infectious tissues with respect to the phenotypic value space. Evolutionary
epidemiology dynamics of infectious tissues with respect to the phenotypic value
space. Evolutionary epidemiology dynamics of infectious tissues with respect
to the phenotypic value space. Initially (at t = 0), the pathogen population is
essentially concentrated around the phenotypic value x0. With the long-time
dynamics, the pathogen population equally concentrates around the phenotypic
values x1 and x2 leading to a dimorphic population.
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4 Preliminaries and proof of Theorem 2.3

In this section we study some spectral properties of the linear operator L defined
in (1.4), acting on Lebesgue spaces, and we prove Theorem 2.3.

To proceed, for each p ∈ [1,∞) we denote by Lp the linear operator L acting
on the Lebesgue space Lp(RN ). Let us observe that since the kernel operator
m ∈ L1(RN ) ∩ L∞(RN ), the operator Lp is a bounded linear operator. Using
this notation, we shall split this section into two parts. We first study the
existence of a principal eigenvalue of the operators Lp for any 1 ≤ p <∞. And,
using these properties, we then turn to the proof of Theorem 2.3.

4.1 Principal eigenpair of operator Lp

As mentioned above, this section is devoted to the study of the principal eigen-
pair for the linear bounded operator Lp for p ∈ [1,∞). We refer to [1] and the
references therein for results about generalized principal eigenvalue for some
non-local operators. In view of our applications, we prove in this section that
Assumptions 2.1 and 2.2 are sufficient to ensure the existence of the principal
eigenpair. The main result of this section reads as follows.

Theorem 4.1 Let Assumptions 2.1 and 2.2 be satisfied. Then the following
hold true:

(i) For each p ∈ [1,∞), the linear operator Lp is compact on Lp(RN ) and,
its spectral radius, denoted by r (Lp), satisfies r (Lp) > 0. Moreover there
exists a function φp ∈ Lp(RN ) such that

φp > 0 a.e. and Lpφp = r (Lp)φp.

Furthermore, if φ ∈ Lp+(RN ) \ {0} satisfies for some α ∈ R the equality
Lpφ = αφ, then φ > 0 a.e., φ ∈ span (φp) while α = r (Lp).

(ii) One has r (Lp) = r (Lq) and φq ∈ Lp
(
RN
)

for all p, q ∈ [1,∞).

(iii) Recalling the definition of ρ[m] in (2.7), the common value of these spectral
radius is characterized as r (Lp) = ρ[m] for any p ∈ [1,∞).

In order to prove this result we shall make use of the so-called Frobenius
theorem, that generalizes the well known Krein-Rutmann theorem for positive,
irreducible and compact linear operators in Banach lattices. Its precise state-
ment can be found in Corollary 4.2.15 in [31] (see also the references therein).

Recall that the open set Ω is defined in (2.6). Let us first observe that when
Ω 6= RN then, for any p ∈ [1,∞), the operator Lp may not be irreducible on
Lp(RN ). To be more precise, if RN \ Ω has a non empty interior, consider any
function φ ∈ Lp+(RN )\{0} such that φ(x) = 0 a.e. for x ∈ Ω. Then (Lp)

n
φ = 0

for all n ≥ 1 and the operator Lp is not irreducible.
Hence, despite the compactness of Lp we cannot directly apply the aforemen-
tioned result. To proceed, let us notice that by extending functions by zero
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outside Ω one may identify for each exponent p ∈ [1,∞) the space Lp(Ω) as a
closed subspace of Lp(RN ). In addition, with such an identification, one may
also consider, for each p ∈ [1,∞), the restriction operator Lp|Lp(Ω) defined
as a bounded linear operator from Lp(Ω) into Lp(RN ) but also the operator
Mp ∈ L (Lp(Ω)) defined, for any u ∈ Lp(Ω), by

Mp[u](x) =

∫
Ω

m(x− y)Ψ(y)u(y)dy =
(
Lp|Lp(Ω)

)
[u](x), a.e. x ∈ Ω. (4.23)

Despite the operator Lp is not irreducible in general, the operator Mp is irre-
ducible. Hence our proof of Theorem 4.1 relies on the study on the spectral
properties of the operator Mp.
Throughout this section, for any p ∈ [1,∞], we shall denote by p′ the conjugated
exponent of p, namely 1

p + 1
p′ = 1.

Proof of Theorem 4.1. The proof is split into several steps.
First step: In this first step we shall show that, for any p ∈ [1,∞), the operator

Lp is compact in Lp
(
RN
)
.

To that aim let us denote, for each h ∈ RN and each function f : RN → R, by
τhf the translation of f by h, defined by τhf(x) = f(x+ h) for all x ∈ RN .
Let p ∈ [1,∞) be given. Let u ∈ Lp(RN ) and h ∈ RN be given. Then one has

‖τhLp[u]− Lp[u]‖pLp(RN ) =

∫
RN

∣∣∣∣∫
RN

[τhm(x− y)−m(x− y)]Ψ(y)u(y)dy

∣∣∣∣p dx.

Then Young inequality yields

‖τhLp[u]− Lp[u]‖Lp(RN ) ≤ ‖τhm−m‖L1(RN )‖Ψ‖∞‖u‖Lp(Ω).

Since ‖τhm−m‖L1(RN ) → 0 as h→ 0 one gets that

lim
h→0

τhLp[u] = Lp[u] in Lp(RN ),

wherein the above convergence holds uniformly on bounded sets on Lp(RN ).
On the other hand, let u ∈ Lp(RN ) and s > 0 be given. Then one has∫
‖x‖>s

|Lp[u](x)|p dx ≤
∫
‖x‖>s

[∫
RN

m(x− y)Ψ(y)|u(y)|dy
]p

dx. (4.24)

Let R > 0 be given. Consider a smooth and nonnegative function χR such that
0 ≤ χR ≤ 1, χR(y) = 1 if |y| ≤ R and χR(y) = 0 if |y| ≥ R + 1. Then, there
exists some constant C = Cp > 0, such that Equation (4.24) becomes∫
‖x‖>s

|Lp[u](x)|p dx ≤Cp
∫
‖x‖>s

[∫
RN

m(x− y)Ψ(y)|u(y)|χR(y)dy

]p
dx

+Cp

∫
‖x‖>s

[∫
RN

m(x− y)Ψ(y)|u(y)|(1− χR(y))dy

]p
dx.
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Now observe that there exists some constant C > 0 independent of u (and R)
such that one has∫
‖x‖>s

[∫
RN

m(x− y)Ψ(y)|u(y)|χR(y)dy

]p
dx ≤ C‖m‖p−1

∞ ||u||p
Lp(RN )

×
∫

‖x‖>s

[
sup

‖x−y‖≤R+1

m(y)

]
dx.

Moreover, since ‖m‖L1(RN ) = 1, Young inequality ensures that∫
‖x‖>s

[∫
RN

m(x− y)Ψ(y)|u(y)|(1− χR(y))dy

]p
dx ≤ sup

‖y‖≥R
|Ψ(y)|p||u||p

Lp(RN )
.

Now, setting Bp(1) the unit ball in Lp(RN ), one obtains from Assumption 2.2
(iii) that for all R > 0

lim sup
s→+∞

sup
u∈Bp(1)

∫
‖x‖>s

|Lp[u](x)|p dx ≤ Cp sup
‖y‖≥R

|Ψ(y)|p.

Finally recalling the last condition in Assumption 2.1, namely that Ψ(x) → 0
as ‖x‖ → ∞, one obtains

lim
s→+∞

sup
u∈Bp(1)

‖Lp[u]‖Lp({‖x‖≥s}) = 0.

Therefore the Fréchet-Kolmogorov theorem applies and ensures that Lp is a
compact operator on Lp(RN ).
Second step: In this second step we shall prove that the spectral radius of the
operator Lp is positive. As mentioned above, the operator Lp is not irreducible,
in general. This difficulty is overcome by using the operator Mp ∈ L (Lp(Ω))
defined in (4.23). Let us first observe that the operator Mp can be re-written as
Mp = rp ◦ Lp ◦ jp, wherein the bounded linear operators jp : Lp(Ω) → Lp(RN )
and rp : Lp(RN )→ Lp(Ω) are defined by

jp[u](x) =

{
u(x) a.e. x ∈ Ω

0 else
and rp[u](x) = u|Ω(x) a.e. x ∈ Ω.

As a consequence of the first step Mp is a compact operator on Lp(Ω).
Moreover, due to the definition of Ω in (2.6), and since m > 0 a.e., the operator
Mp is irreducible on Lp(Ω). We deduce from this discussion that Frobenius
theorem (see Theorem 4.2.13 and Corollary 4.2.15 in [31]) applies and ensures
that its spectral radius r (Mp) is positive and it is a simple eigenvalue of Mp

associated to an eigenvector ψp > 0 a.e. in Ω. Moreover if α ∈ R is an eigenvalue
Mp associated to an eigenvector ψ ∈ Lp+(Ω) \ {0} then α = r (Mp) and ψ > 0
a.e. in Ω.

As a consequence, if ψ ∈ Lp(Ω) is a principal eigenvector of Mp, then the
function φ ∈ Lp(RN ), defined by

φ(x) =

{
ψ(x) if x ∈ Ω,

1
r(Mp)

∫
Ω
m(x− y)Ψ(y)ψ(y)dy if x 6∈ Ω,
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satisfies Lpφ = r (Mp)φ so that 0 < r(Mp) ≤ r(Lp).
As a consequence of the positivity of the spectral radius r(Lp) (see Lemma

4.2.10 in [31]) there exists φ ∈ Lp+(RN ) \ {0} such that Lpφ = r(Lp)φ. Hence

the function ψ := φ|Ω ∈ L
p
+(Ω) \ {0} is such that Mpψ = r (Lp)ψ. Therefore

because of the properties of the spectral eigenpair stated above for the operator
Mp, one concludes that

r(Mp) = r(Lp) and φ > 0 a.e. in RN .

This argument coupled with the properties of the operator Mp completes the
proof of Theorem 4.1 (i).
Third step: In this step we complete the proof of Theorem 4.1 (ii). By the first

item (i) with p = 1, there exists a function φ1 ∈ L1(RN ) with φ1 > 0 a.e. such
that r(L1)φ1 = L1φ1. Now, let q ≥ 1 be given. Because of (i), in order to show
that r(Lq) = r(L1), it is sufficient to show that φ1 ∈ Lq(RN ). However note
that this follows from Young inequality. Indeed since φ1 ∈ L1(RN ) and m ∈
L1(RN )∩L∞(RN ), then the convolution product m∗(Ψφ1) ∈ L1(RN )∩L∞(RN )
and the result follows.
Fourth step: We now complete the proof of Theorem 4.1 by proving (iii).
To that aim, because of the result of (ii) and by the proof of the second step,
it is sufficient to show that ρ[m] = r (M2), where the operator M2 is defined in
(4.23) with p = 2. Let ψ ∈ L2(Ω) with ψ > 0 a.e. be a principal eigenvector of

M2. Then, recalling the function Θ defined in (2.6) as Θ = Ψ
1
2 , it satisfies∫

Ω

m(x− y)Θ(y)ϕ(y)dy = r(M2)ψ(x), ∀x ∈ Ω, with ϕ(x) := Θ(x)ψ(x).

Hence multiplying the above equation by Θ(x) yields

Θ(x)

∫
Ω

m(x− y)Θ(y)ϕ(y)dy = r(M2)ϕ(x), ∀x ∈ Ω.

Next consider the linear bounded operator M̂ on the Hilbert space L2(Ω) defined
by

M̂ [ϕ](x) = Θ(x)m ∗ (Θϕ) (x), ∀x ∈ Ω, ∀ϕ ∈ L2(Ω).

Then observe that using similar arguments as the ones developed for the study
of M2, the positive linear operator M̂ is compact and irreducible. Since φ(.) =
Θ(.)ψ(.) ∈ L2(Ω) with φ > 0 a.e., one deduces that

r (M2) = r
(
M̂
)
.

Finally, due to the symmetry hypothesis on the mutation kernel m, the operator
M̂ is self-adjoint and then, the Rayleigh quotient formulation for the principal
eigenvalue of M̂ ensures that

r (M2) = r
(
M̂
)

= ρ[m].

This completes the proof of (iii) and also completes the proof of Theorem 4.1.
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Remark 4.2 From the above proof, we have obtained that if (r, φ) ∈ (0,∞) ×
L1(RN ) is a principal eigenpair of L1 (and thus of Lp for any p ≥ 1) then(
r, φ|Ω

)
(resp.

(
r,Θφ|Ω

)
) is a principal eigenpair of Mp (resp. M̂). One may

also observe that if (r, ϕ) ∈ (0,∞) × L2(Ω) is a principal eigenpair of M̂ , then
the function ψ = ϕ

Θ ∈ L
2(Ω) and the pair (r, ψ) is a principal eigenpair of M2

(and thus of Mp for any p ≥ 1). From the construction of the second step of the
proof above, the pair (r, φ), where the function φ is defined by

φ(x) =
1

r

∫
Ω

m(x− y)Θ(y)ϕ(y)dy, x ∈ RN ,

is a principal eigenpair of L2, thus of Lp for any p ≥ 1.
This remark provides a correspondence between the principal eigenpairs of the
three types of operators Lp, Mp and M̂ . This will be used in the sequel.

4.2 Proof fo Theorem 2.3

This section is devoted to the proof of Theorem 2.3. For that purpose, let us

observe that the trivial stationary state
(
S0, i0, A0

)
:=
(

Λ
µ , 0, 0

)
is an equilib-

rium of (1.1) whatever the value of threshold T0. In order to prove Theorem
2.3, it is sufficient to study System (2.5). Hence we look for non-trivial so-
lution (S, i, A) ∈ (0,∞) × L1

+

(
(0,∞)× RN

)
× L1

+(RN ) satisfying (2.5). Here
non-trivial means that A 6≡ 0.

Note that using the notation of the previous section, (2.5) re-writes as
L1[A](x) =

1

S
A(x), x ∈ RN

Λ− µS = S

∫
RN

β(y)A(y)dy and i(a, x) = β(x)SA(x)e−µa.
(4.25)

Because of Theorem 4.1 (i), one obtains that r(L1) = 1
S and A ∈ span (φ1),

wherein φ1 ∈ L1(RN )∩L∞(RN ) denotes the principal eigenfunction of L1 nor-
malized by ‖φ1‖L1(RN ) = 1 and such that φ1 > 0 a.e.. We write A = λφ1 for
some unknown constant λ > 0. Plugging this expression into the S−equation
of Problem (4.25) one obtains that

Λ− µ

r(L1)
=

λ

r(L1)

∫
RN

β(y)φ1(y)dy.

Hence, since the right hand side of the above equality is positive and recalling
that due to Theorem 4.1 one has r(L1) = ρ[m], the condition T0 > 1 is a
necessary condition for the existence of a non-trivial stationary state.

On the other hand, if T0 > 1, then System (4.25) admits a unique solution
that is given by

S =
1

r(L1)
, A(x) =

Λr(L1)− µ∫
RN β(y)φ1(y)dy

φ1(x) and i(a, x) = β(x)A(x)e−µa.

(Here recall that since Ψ 6≡ 0, then β 6≡ 0 so that the integral arising in the
expression of A is positive) This completes the proof of Theorem 2.3.
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5 Preliminary spectral estimates and quasi-modes

This section is concerned with the derivation of preliminary asymptotic expan-
sions of the eigenvalues of some linear operators.

For notational simplicity, throughout this section we write m, Ψ, Θ and x0
i ,

for i = 1, ..,M , instead of m̂, Ψ̂, Θ̂ and x̂0
i for i = 1, ..,M defined in (2.11) and

(2.12).

5.1 Asymptotic spectral estimates

We shall analyse the limiting behaviour as ε → 0 of the principal eigenvalue
(or spectral radius) associated to the linear operator Lε defined in (2.9). We
denote the spectral radius of Lε by λε i.e. λε = r (Lε). Because of Remark 4.2,
it is also given as the principal eigenvalue of the symmetric linear operator Mε

acting on L2(RN ) and defined by

Mε[u](x) = Θ(x)

∫
Ω

mε(x− y)Θ(y)u(y)dy, x ∈ RN . (5.26)

Thus we shall analyse the spectral properties as ε → 0 of the linear operator
Mε on the Hilbert space L2(RN ). Observe that, using the same arguments as
in the proof of Theorem 4.1, for each ε > 0, the operator Mε is self-adjoint,
compact but may not be irreducible if Ω 6= RN . However its spectrum coincides
with the one of its restriction to L2(Ω), that is an irreducible operator.

Our analysis of the spectrum of Mε relies on a suitable comparison between
the linear operator Mε and the so-called harmonic operators P εj defined around

each point of the set
{
x0
j

}
j=1,..,M

given in Assumption 2.4 (ii). Here to be

more precise, the linear operators P εj , for j = 1, ..,M and ε > 0, are defined on

L2(RN ) by

P εj = −ε2∆ + Vj(x) with Vj(x) =
∥∥∥A 1

2
j

(
x− x0

j

)∥∥∥ . (5.27)

Now for any j = 1, ..,M , let us denote by ωj = (ωj,1, .., ωj,N )
T

with ωj,l > 0 the
vector of eigenvalues of the positive definite (see Assumption 2.4 (ii)) matrix

A
1
2
j =

(
−D2Ψ

(
x0
j

)) 1
2 . Then the spectrum of P εj is given by{
σ
(
P εj
)

=
{
εeα,j : α ∈ NN

}
,

with eα,j = 2α · ωj + tr
(
A

1
2
j

)
, ∀α ∈ NN .

(5.28)

In the above formula, the symbol · denotes the inner Euclidean product in RN .
In order to state our first result related to the spectrum of the operator Mε,

we reorder the set{
eα,j : j = 1, ..,M, α ∈ NN

}
= {e1, e2, ..., en, ...},

with e1 ≤ e2 ≤ e3 ≤ ... ≤ en ≤ ...
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Here the elements appearing in the above sets are computed with multiplicity.
Let us also note that, if we consider the linear operator P ε :=

⊕M
j=1 P

ε
j acting

on
⊕M

j=1 L
2(RN ), then its spectrum is given, for any ε > 0, by

σ (P ε) =
{
εeα,j : j = 1, ..,M, α ∈ NN

}
.

Also notice that the normalized eigenfunction of the operator P εj associated to
the eigenvalue εeα,j is given by

gεα,j(y) = ε−N/4hα

(
y − x0

j√
ε

)
exp

(
− 1

2ε

∣∣∣∣∣∣A 1
2
j (y − x0

j )
∣∣∣∣∣∣2) , α ∈ NN ; (5.29)

where hα = hα1 ⊗ · · · ⊗ hαN while hl denotes the one-dimensional Hermite
polynomial

hl(y) =
(−1)l√
2ll!π1/4

ey
2

(
d

dy

)(l)

e−y
2

.

With this notation, our first result reads as follows.

Proposition 5.1 Let Assumptions 2.1, 2.2, 2.4 and 2.5 be satisfied. Let us
denote by E1(ε) > E2(ε) ≥ ... ≥ En(ε) ≥ ..., the eigenvalues of Mε. Then for
each n ≥ 1, the following expansion holds true:

En(ε) = 1− εen +O
(
ε6/5

)
for 0 < ε << 1.

The proof of this proposition is classical and based on the Rayleigh quotient
formulation for the eigenvalues. The proof is omitted and we refer the reader
to [36] and [34].

5.2 Construction of quasi-modes and properties of the se-
quences {λk,j}k≥0

In this section we shall construct suitable quasi-modes for the operator Mε

around x0
j for some fixed index j ∈ {1, ..,M} and we shall study properties of

the sequences {λk,j}k≥0 defined in (2.16).

To that aim we consider the unitary operators Uεj defined on L2(RN ) by

Uεj [u](x) := ε−
N
4 u
(
ε−

1
2

(
x− x0

j

))
.

Here note that
(
Uεj
)−1

[u](x) = ε
N
4 u
(
ε

1
2x+ x0

j

)
. Next observe that one has

(1−Mε) [u](x) =

∫
RN

(u(x)− u(x+ εy))Kε(x, y)dy + Vε(x)u(x),

wherein we have set{
Kε(x, y) = Θ(x)Θ(x+ εy)m(y),

Vε(x) = 1− Θ(x)
2

∫
RN [Θ(x+ εy) + Θ(x− εy)]m(y)dy.

(5.30)
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Note also that one has

Mε
j [u](x) :=

((
Uεj
)−1 ◦ (1−Mε) ◦ Uεj

)
[u](x)

=

∫
RN

(
u(x)− u(x+ ε

1
2 y)
)
Kε

(
ε

1
2x+ x0

j , y
)

dy + Vε

(
ε

1
2x+ x0

j

)
u(x).

(5.31)

Recalling the definition of the sequence {(λp,j , ϕp,j)}p≥0 in (2.16), the fol-
lowing proposition holds true:

Proposition 5.2 Let n ≥ 2 be given. Let us define uε,n by

uε,n =
n∑
p=0

ε
p
2ϕp,j .

Then one has for ε << 1:

Mε
j [uε,n] = −

(
n∑
p=0

ε1+ p
2 λp,j

)
uε,n +O

(
ε
n+1

2

)
in L2

(
RN
)
.

Remark 5.3 Using the above proposition one may already prove Theorem 2.6
in the special case where

card

{
i = 1, ..,M, tr

(
A

1
2
i

)
= min
j=1,..,M

tr
(
A

1
2
j

)}
= 1. (5.32)

Indeed in that case, because of Proposition 5.1, there exists a unique i ∈ {1, ..,M}
such that

E1(ε) = 1− εtr
(
A

1
2
i

)
+O

(
ε

6
5

)
,

while for any j ≥ 2 one has

lim
ε→0

1

ε
(1− Ej(ε)) 6= tr

(
A

1
2
i

)
.

However, since Mε is self-adjoint, note that for each n ≥ 2, Proposition 5.2
ensures that

dist

(
1 +

n∑
p=0

ε1+ p
2 λp,i;σ (Mε)

)
= O

(
ε
n+1

2

)
.

Hence since λ0,i = −tr
(
A

1
2
i

)
, one obtains that

E1(ε) = 1 +

n∑
p=0

ε1+ p
2 λp,i +O

(
ε
n+1

2

)
,

and Theorem 2.6 follows from Lemma 5.5 below in that particular case where
(5.32) holds true.
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Before going to the proof of Proposition 5.2, let us first observe that the
functions ϕp,j for p ≥ 0 take the form of a polynomial multiplied by ϕ0,j (see
(2.15)). Hence for each p ≥ 0 and each multi-index α ∈ NN , there exist some
constant Cp,α > 0 and some integer Np,α ∈ N such that

|∂αϕp,j(x)| ≤ Cp,α
(
1 + ‖x‖Np,α

)
exp

−‖A 1
2
j x‖2

2

 , ∀x ∈ RN .

Next the proof of the above proposition is based on the following stated estimate.
We claim that

Claim 5.4 For each integer m ≥ 0, n ≥ 0 and r ≥ 0, there exists some constant
Cm,n,r > 0 such that for all ε ∈ [0, 1] one has∥∥∥∥∥∥‖.‖n

∫
RN
‖.+ ε

1
2 y‖r exp

−‖A
1
2
j

(
.+ ε

1
2 y
)
‖2

2

 ‖y‖mm(y)dy

∥∥∥∥∥∥
L2(RN )

≤ Cm,n,r.

Proof. Let us observe that, for any ε ∈ (0, 1], one has for all x ∈ RN :

‖x‖n
∫
RN
‖x+ ε

1
2 y‖r exp

−‖A
1
2
j

(
x+ ε

1
2 y
)
‖2

2

 ‖y‖mm(y)dy

≤
∫
RN

(
‖x+

√
εy‖+

√
ε‖y‖

)n ‖x+ ε
1
2 y‖r exp

−‖A
1
2
j

(
x+ ε

1
2 y
)
‖2

2

 ‖y‖mm(y)dy

≤
n∑
k=0

(
n

k

)
ε
n−k

2

∫
RN
‖x+

√
εy‖r+k exp

−‖A
1
2
j

(
x+ ε

1
2 y
)
‖2

2

 ‖y‖n−k+mm(y)dy.

By setting, for each integer k ≥ 0, mk the function defined by

mk(y) = ‖y‖km(y),

and recalling that ε ∈ (0, 1], one gets for any x ∈ RN :

‖x‖n
∫
RN
‖x+ ε

1
2 y‖r exp

−‖A
1
2
j

(
x+ ε

1
2 y
)
‖2

2

 ‖y‖mm(y)dy

≤
n∑
k=0

(
n

k

)‖.‖k+r exp

−‖A 1
2
j .‖2

2

 ∗ (ε−N2 mk

(
.

ε
1
2

))
(x).
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Finally using Young convolution inequality one obtains∥∥∥∥∥∥‖.‖n
∫
RN
‖.+ ε

1
2 y‖r exp

−‖A
1
2
j

(
.+ ε

1
2 y
)
‖2

2

 ‖y‖mm(y)dy

∥∥∥∥∥∥
L2(RN )

≤
n∑
k=0

(
n

k

)∥∥∥∥∥∥‖.‖k+r exp

−‖A 1
2
j .‖2

2

∥∥∥∥∥∥
L2(RN )

‖mk‖L1(RN ) ,

and the claim follows for any ε ∈ (0, 1] and also for ε = 0 because of Fatou
lemma.
Proof of Proposition 5.2. Recalling that Ψ = Θ2 and setting u = uε,n, let us
observe that one has∫

RN

(
u(x)− u(x+ ε

1
2 y)
)
Kε

(
ε

1
2x+ x0

j , y
)

dy

=
∑

β≥0, α≥0
|α|+2|β|≤n

ε
|α|
2 +|β|aα,βj xα

∫
RN

(
u(x)− u(x+ ε

1
2 y)
)
yβm(y)dy +Rε[u](x),

wherein we have set

aα,βj =
∂βΘ(x0

j )∂
αΨ(x0

j )

(β + α)!
, (5.33)

while the remainder satisfies that there exists some constant Cn > 0 such that
for all ε ∈ (0, 1]:

|Rε[u](x)| ≤ Cnε
n+1

2

(
1 + ‖x‖n+1

) ∫
RN
|u(x)−u

(
x+ ε

1
2 y
)
|
(
1 + ‖y‖n+1

)
m(y)dy.

Hence because of Claim 5.4 one obtains that

Rε[u] = O
(
ε
n+1

2

)
as ε→ 0 in L2(RN ).

Using once again Claim 5.4 we get

−
∫
RN

(
u(x)− u(x+ ε

1
2 y)
)
Kε

(
ε

1
2x+ x0

j , y
)

dy

=
∑

α,β∈NN , |γ|≥1, p≥0
p+|α|+|γ|+2|β|≤n

εp+
|α|+|γ|

2 +|β|a
(α,β,γ)
j xα∂γϕp,j(x) +O

(
ε
n+1

2

)
,

wherein we have set

a
(α,β,γ)
j =

1

γ!
aα,βj

∫
RN

yγ+βm(y)dy.
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As a consequence we obtain

−Mε
j [uε,n] =

∑
α,β∈NN , |γ|≥1, p≥0
p+|α|+|γ|+2|β|≤n

εp+
|α|+|γ|

2 +|β|a
(α,β,γ)
j xα∂γϕp,j

+
∑

k≥0, |α|+|β|≥1
k+|α|+2|β|≤n

ε
k+|α|

2 +|β|b
(α,β)
j xαϕk,j +O

(
ε
n+1

2

)
,

with

b
(α,β)
j =

1 + (−1)|β|

2

∂αΨ
(
x0
j

)
∂βΘ

(
x0
j

)
(α+ β)!

∫
RN

yβm(y)dy.

Now recalling that Ψ(x0
j ) = Θ(x0

j ) = 1 and ∇Ψ(x0
j ) = ∇Θ(x0

j ) = 0, straightfor-
ward computations yields

−Mε
j [uε,n] = −ε (Pj + λ0,j)ϕ0,j+ε

n−2∑
p=1

ε
p
2

(
− (Pj + λ0,j)ϕp,j +

p−1∑
k=0

Dj,pkϕk,j

)
+O

(
ε
n+1

2

)
,

where Pj is the operator defined in (2.14) and the differential operators Dj,p are
defined by

Dj,p =
∑

|α|+2|β|+|γ|=2+p, |γ|≥1

a
(α,β,γ)
j xα∂γ +

∑
|α|+2|β|=2+p

b
(α,β)
j xα. (5.34)

Finally recalling (2.16) completes the proof of Proposition 5.2.
We now give some further properties of the sequences {λk,j}k≥0 for j ∈

{1, ..,M}. To that aim recall that functions ϕk,j are given by a polynomial
multiplied by ϕ0,j , defined in (2.15). We now write, for each k ≥ 0 and j ∈
{1, ..,M}:

ϕk,j = Qk,jϕ0,j with Qk,j ∈ R[X1, .., XN ].

The next lemma ensures that the formal series
∑∞
k=0 ε

k
2 λk,j does not contain

any 1
2 -degree terms.

Lemma 5.5 Let j ∈ {1, ..,M} be given and fixed. Then the polynomials Qk,j
satisfy

Qk,j(−X) = (−1)kQk,j(X),

and the sequence {λk,j}k≥0 satisfies

λk,j = 0 if k = 1 mod 2.

Proof. During this proof, since the index j is fixed we write Qk and λk respec-
tively instead of Qk,j and λk,j . To prove this result, let us observe that the
sequence {Qk}k≥0 satisfies the following equation for all X = (X1, .., XN )T :

ϕ−1
0,j (Pj + λ0,j) [ϕ0,jQk] =

(
−∆ + 2A

1
2
j X · ∇

)
Qk

= −
k−1∑
p=0

λk−pQp +

k−1∑
p=0

ϕ−1
0,jDj,k−p [ϕ0,jQp] .
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Next let us write R[X1, .., XN ] = E+ ⊕ E− with

E± = {P ∈ R[X1, .., XN ] : P (−X) = ±P (X)}.

Next observe that
(
−∆ + 2A

1
2
j X · ∇

)
E± ⊂ E± and that

ker
(
−∆ + 2A

1
2
j X · ∇

)
= {P ∈ R[X1, .., XN ] : P = P (0)} = R ⊂ E+.

Next we shall prove, using an induction argument for k ≥ 0, that

Q2p ∈ E+, Q2p+1 ∈ E− and λ2p+1 = 0, ∀p ∈ {0, .., k}. (5.35)

Step k = 0: Let first observe that Q0(X) = 1 and that the function ϕ1,j =
Q1ϕ0,j satisfies the equation

(Pj + λ0,j)ϕ1,j = −λ1ϕ0,j +Dj,1 [ϕ0,j ] .

Recall that Dj,1 is defined in (5.34), that reads as

Dj,1 =
∑

|α|+2|β|+|γ|=3, |γ|≥1

a
(α,β,γ)
j xα∂γ +

∑
|α|+2|β|=3

b
(α,β)
j xα

=
∑
|γ|=3

a
(0,0,γ)
j ∂γ +

∑
|α|=3

b
(α,0)
j xα +

∑
|α|=1, |β|=1

b
(α,β)
j xα.

Now looking at the definition of the coefficients a
(α,β,γ)
j and b

(α,β)
j above and

recalling that m is symmetric, we get

Dj,1 =
∑
|α|=3

b
(α,0)
j xα.

Thus the equation for ϕ1,j reduces to

(Pj + λ0,j)ϕ1,j = −λ1ϕ0,j +
∑
|α|=3

b
(α,0)
j xαϕ0,j .

Now Fredholm alternative ensures that

−λ1ϕ0,j +
∑
|α|=3

b
(α,0)
j xαϕ0,j ⊥ ϕ0,j ⇒ λ1 = 0,

so that ϕ1,j and equivalently Q1 respectively solve

(Pj + λ0,j)ϕ1,j =
∑
|α|=3

b
(α,0)
j xαϕ0,j and

(
−∆ + 2A

1
2
j X · ∇

)
Q1 =

∑
|α|=3

b
(α,0)
j xα ∈ E−.

This ensures that Q1 ∈ R ⊕ E− while the condition ϕ1,j ⊥ ϕ0,j ensures that
Q1(0) = 0. This re-writes as Q1 ∈ E− and this completes the first step for
k = 0.
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Step from k to k + 1: Here we assume that (5.35) holds for some k ≥ 0 and we
shall prove that it also holds true for k+ 1. To that aim let us first observe that

2k+1∑
p=0

λ2k+2−pQp =

k∑
p=0

λ2k+2−2pQ2p ∈ E+.

On the other hand observe that

2k+1∑
p=0

ϕ−1
0,jDj,2k+2−p [ϕ0,jQp] =

∑
|α|+2|β|=4+2k−p

b
(α,β)
j XαQp

+

2k+1∑
p=0

∑
|α|+|γ|=2(2+k−|β|)−p

|γ|≥1

a
(α,β,γ)
j ϕ−1

0,jX
α∂γ (ϕ0,jQp) .

However for each |α| = p mod 2 one gets XαQp ∈ E+ while, for each |α|+|γ| =
p mod 2 we have ϕ−1

0,jX
α∂γ (ϕ0,jQp) ∈ E+. Hence this yields(

−∆ + 2A
1
2
j X · ∇

)
Q2k+2 ∈ E+ and Q2k+2 ∈ E+.

Now, using the same argument as above, let us show that Q2k+3 ∈ E−. Firstly
note that

2k+2∑
p=1

λ2k+3−pQp =

k∑
p=0

λ2k+3−(2p+1)Q2p+1 ∈ E−.

Next note that

2k+2∑
p=0

ϕ−1
0,jDj,2k+3−p [ϕ0,jQp] =

∑
|α|+2|β|=5+2k−p

b
(α,β)
j XαQp

+

2k+2∑
p=0

∑
|α|+|γ|=1+2(2+k−|β|)−p

|γ|≥1

a
(α,β,γ)
j ϕ−1

0,jX
α∂γ (ϕ0,jQp) .

Now note that for each |α| = 1 + p mod 2 one gets XαQp ∈ E− while, for each
|α|+ |γ| = 1 + p mod 2 we have ϕ−1

0,jX
α∂γ (ϕ0,jQp) ∈ E−. Thus we get(

−∆ + 2A
1
2
j X · ∇

)
Q2k+3 = −λ2k+3 +R with R ∈ E−.

Hence because of Fredholm solvability condition one gets

−λ2k+3

∫
RN

ϕ2
0,j(x)dx+

∫
RN

R(x)ϕ2
0,j(x)dx = 0.

Next since R ∈ E− the second integral in the above solvability condition van-

ishes that ensures that λ2k+3 = 0. Moreover since
(
−∆ + 2A

1
2
j X · ∇

)
Q2k+3 ∈

E− we obtain that Q2k+3 ∈ R⊕ E−. Finally since ϕ0,j ⊥ ϕ2k+3,j = Q2k+3ϕ0,j

this yields Q2k+3 = 0 and Q2k+3 ∈ E−. This completes the proof of the induc-
tion step and thus the proof of the proposition.
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6 Spectral properties with a single peak

As in the previous section, for notational simplicity, throughout this section we
write m, Ψ, Θ and x0

i , for i = 1, ..,M , instead of m̂, Ψ̂, Θ̂ and x̂0
i for i = 1, ..,M

defined by (2.11) and (2.12).
We shall work around a single peak of the fitness function Ψ. To proceed we

fix i ∈ {1, ..,M} and a radius r > 0 such that

Ψ > 0 on B
(
x0
i , r
)

and Ψ(x) < ‖Ψ‖∞ ∀x ∈ B
(
x0
i , r
)
\ {x0

i }.

Now we consider the linear operator Mε,r
i defined on L2

(
B(x0

i , r)
)

by

Mε,r
i [u](x) = u(x)−Θ(x)

∫
B(x0

i ,r)

mε(x− y)Θ(y)u(y)dy, x ∈ B(x0
i , r). (6.36)

The aim of this section is to study some spectral properties of this self-adjoint
operator. Let us denote by {Fi,k(ε)}k≥1 it sequence of eigenvalues ordered such
that

Fi,1(ε) < Fi,2(ε) ≤ · · · ≤ Fi,k(ε) ≤ · · ·
Now let us mention that the asymptotic derived in Proposition 5.1 also holds
true for this operator. This means, in this context, that one has

Fi,k(ε) = εeik +O
(
ε

6
5

)
,

wherein the sequence
{
eik
}
k≥1

denotes the increasing rearrangement of the set

{eα,i, α ∈ NN} as defined in (5.28). We also would like to mention here that
the construction of quasi-modes in the previous section for the operator Mε is
also valid for operator Mε,r

i . Hence, since we work around as single peak x0
i ,

we deduce that the lowest eigenvalue Fi,1(ε) of this operator has an asymptotic
series. More precisely one has

Fi,1(ε) ∼
∞∑
k=0

ε1+kλ2k,i. (6.37)

In this section we establish Agmon like decay estimates for the eigenvectors of
the operator Mε,r

i defined above in (6.36). The main result of this section reads
as follows.

Theorem 6.1 (Decay estimates) Let Assumptions 2.1, 2.2, 2.4 and 2.5 be
satisfied. Fix R0 > 0 large enough so that [0, εR0] ∩ σ (Mε,r

i ) 6= ∅ for all ε > 0
small enough. Recalling the definition of γ0 in Assumption 2.5 (i), then there
exist η1 > 0 small enough and some constant C > 0 such that for all 0 < ε << 1
small enough and each uε ∈ L2

(
B(x0

i , r)
)
), normalized (in L2) eigenfunction of

Mε,r
i associated to some eigenvalue E ∈ [0, εR0], the following holds true:∥∥∥∥exp

(
η1
‖x0

i − ·‖
εγ0

)
uε(·)

∥∥∥∥
L2(B(x0

i ,r))

≤ C for all ε > 0 small enough. (6.38)
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Proof. For notational simplicity, without loss of generality, we assume that
x0
i = 0 and we write Mε,r

i ≡Mε,r.
Recalling the definition of the function Kε in (5.30); and for η > 0, let us

define the non-negative function V εη on B(0, r) by

V εη (x) :=

∫
B(−x, rε )

[
cosh

( η

εγ0
(‖x‖ − ‖x+ εy‖)

)
− 1
]
Kε(x, y)dy. (6.39)

Next we claim that:

Claim 6.2 There exist η1 > 0 and some constant C > 0 such that, for any
ε ∈ (0, 1), one has

0 ≤ V εη1
(x) ≤ Cε1−γ0 , ∀x ∈ B(0, r).

Proof of Claim 6.2. In order to prove this estimate, let us first observe that,
for any x ∈ B(0, r) and y ∈ B

(
−x, rε

)
and any ε > 0, one has due to triangular

inequality
η

εγ0
|‖x‖ − ‖x+ εy‖| ≤ ηε1−γ0‖y‖.

Now note that, since cosh t−1 ≤ |t|e|t|, for all t ∈ R, it comes, for any x ∈ B(0, r)
and y ∈ B

(
−x, rε

)
, that

cosh
( η

εγ0
(‖x‖ − ‖x+ εy‖)

)
− 1 ≤ηε1−γ0‖y‖ exp

(
ηε1−γ0‖y‖

)
.

Recalling that Kε(x, y) ≤ ‖Θ‖2∞m(y), this yields, for any x ∈ B(0, r),

V εη (x) ≤ Lε1−γ0

∫
B(0, rε )

‖x− z‖ exp
(
ηε1−γ0‖x− z‖

)
m(x− z)dz,

wherein we have set L = ‖Θ‖2∞η. Now due to the decay estimate in Assumption
2.5 (i) it follows that for any x ∈ B(0, r) one has

V εη (x) ≤M0Lε
1−γ0

∫
B(0, rε )

‖x− z‖ exp
(
ηε1−γ0‖x− z‖ − η0‖x− z‖γ0

)
dz.

(6.40)
On the other hand, for any x ∈ B(0, r) and z ∈ B

(
0, rε
)
, one has

ηε1−γ0‖x− z‖ − η0‖x− z‖γ0 ≤
(
ηε1−γ0‖x− z‖1−γ0 − η0

)
‖x− z‖γ0

≤
(
r1−γ0η (1 + ε)

1−γ0 − η0

)
‖x− z‖γ0 .

(6.41)

Now let us fix η1 > 0 such that for all 0 < ε < 1

r1−γ0η1 (1 + ε)
1−γ0 ≤ η0

2
.
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So we infer from the above estimates, namely (6.40) and (6.41), that for all
ε ∈ (0, 1)

V εη1
(x) ≤M0η1‖Θ‖2∞ε1−γ0

∫
B(0, rε )

‖x− z‖ exp
(
−η0

2
‖x− z‖γ0

)
dz.

This completes the proof of Claim 6.2.
Equipped with Claim 6.2 we are able to deal with the last step of the proof

of Theorem 6.1.
Recalling the definition of the function Vε in (5.30) and since B(0, r) is

bounded, there exists some constant C1 > 0 such that for all ε small enough
one has

C1ε
1−γ0 ≥ C1ε ≥ Vε(x)− V0(x) ≥ −C1ε ≥ −C1ε

1−γ0 , ∀x ∈ B(0, r),

with V0(x) = 1−Ψ(x). Now since V0(x) > 0 for any x ∈ B(0, r) \ {0} and since
x0
i = 0 is a non-degenerate minimum of V0 there exist some constants C2 > 0

and C3 > 0 such that C2‖x‖2 ≤ V0(x) ≤ C3‖x‖2 for all x ∈ B(0, r). Hence we
infer from Claim 6.2 that

C3‖x‖2 ≥ V0(x)− V εη1
(x) ≥ C2‖x‖2 − Cε1−γ0 , ∀x ∈ B(0, r).

Thus, we deduce that for any ε > 0 small enough one has

Vε(x)− V εη1
(x) ≥ C2‖x‖2 − [C1 + C] ε1−γ0 ,

Vε(x)− V εη1
(x) ≤ C3‖x‖2 + C1ε

1−γ0 ,
∀x ∈ B(0, r).

Now, let b ∈ [0, R0] be given and define the sets

Xε,b
− :=

{
x ∈ B(0, r) : Vε(x)− V εη1

(x)− εb < 0
}

and Xε,b
+ = B(0, r) \Xε,b

− .

Then, observe that

Xε,b
− ⊂

{
x ∈ B(0, r) : ‖x‖2 ≤ ε1−γ0C4

}
, with C4 =

C + C1

C2
.

Next define the functions R± : B(0, r)→ [0,∞) by

R+(x) :=
√
ε1−γ01{‖x‖2≤ε1−γ0C4}(x) +

(
Vε(x)− V εη1

(x)− εb
)
1Xε,b+

(x),

R−(x) :=
√
ε1−γ01{‖x‖2≤ε1−γ0C4}(x)−

(
Vε(x)− V εη1

(x)− εb
)
1Xε,b−

(x).

With this notation, in order to complete the proof of Theorem 6.1, we claim
that:

Claim 6.3 Consider the function Φε defined by

Φε(x) = exp

(
η1‖x‖
εγ0

)
. (6.42)
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By setting R := R+ + R− > 0, the following holds true for any ε > 0 small
enough, any b ∈ [0, R0] and any u ∈ L2 (B(0, r)):

‖RΦεu‖2L2(B(0,r)) ≤ 4

∥∥∥∥ 1

R
Φε (Mε,r − εb)u

∥∥∥∥2

L2(B(0,r))

+ 8 ‖R−Φεu‖2L2(B(0,r)) .

(6.43)

Before proving this claim, we first complete the proof of Theorem 6.1. To
that aim observe that

R2
+(x)−R2

−(x) ≡ Vε(x)− V εη1
(x)− εb.

Now note that there exists some constant C5 > 0 (independent of b ∈ [0, R0]
and ε) such that

R := R+ +R− ≥ C5ε
1−γ0

2 and R− ≤ C5ε
1−γ0

2 . (6.44)

As a consequence one gets for any u ∈ L2(B(0, r)):
‖RΦεu‖2L2(B(0,r)) ≥ C

2
5ε

1−γ0 ‖Φεu‖2L2(B(0,r)) ,∥∥∥∥ 1

R
Φε (Mε,r − εb)u

∥∥∥∥2

L2(B(0,r))

≤ C−2
5 ε−(1−γ0) ‖Φε (Mε,r − εb)u‖2L2(B(0,r)) ,

‖R−Φεu‖2L2(B(0,r) ≤ C
2
5ε

1−γ0 ‖u‖2L2(B(0,r)) .

Coupling the above estimates with the estimate provided by Claim 6.3 ensures
that there exists some constant C6 > 0 such that for all u ∈ L2(B(0, r)), all
ε > 0 small enough and b ∈ [0, R0]:

‖Φεu‖2L2(B(0,r)) ≤ C6

[
ε−2(1−γ0) ‖Φε (Mε,r − εb)u‖2L2(B(0,r)) + ‖u‖2L2(M0)

]
.

Choosing u = uε ∈ L2(B(0, r)) \ {0} and b = bε such that Mε,ruε = εbεu
ε and

inserting into the above estimate completes the proof of Theorem 6.1.
Finally, it remains to prove Claim 6.3.

Proof of Claim 6.3. . Notice that by the definition of Kε in (5.30), we have for
all nonnegative functions ψ1, ψ2 ∈ L2(RN ),∫
RN×RN

ψ1(x+ εy)ψ2(x)Kε(x, y)dydx =

∫
RN×RN

ψ1(x)ψ2(x+ εy)Kε(x, y)dydx.

Then, by applying successively Lemmas 2.1 and 2.3 in [21], (6.43) follows and
this ends the proof of Claim 6.3.

7 Proof of Theorem 2.6, Theorem 2.7

This section is devoted to the proof of the asymptotic expansion stated in The-
orem 2.6 and of the concentration result stated in Theorem 2.7.
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As in the previous sections, for notational simplicity, throughout this section
we write m, Ψ, Θ and x0

i , for i = 1, ..,M , instead of m̂, Ψ̂, Θ̂ and x̂0
i for

i = 1, ..,M defined by (2.11) and (2.12).
Let s0 := minj 6=k ||x0

j − x0
k||2 denote the minimum distance over all two

different points x0
l , l = 1, . . . ,M . Then for any s ∈ (0, s0) and j = 1, ..,M , the

ball of radius s centred at x0
j , denoted by B(x0

j , s), satisfies x0
k /∈ B

(
x0
j , s
)

for
k 6= j. Let us consider the set N ⊂ {1, ..,M} defined by

N =

{
j ∈ {1, ..,M} : λ0,j = max

p=1,..,M
λ0,p

}
=

{
j ∈ {1, ..,M}, tr

(
A

1
2
j

)
= min
p=1,..,M

tr
(
A

1
2
p

)}
.

Let us observe that if cardN = 1, then Remark 5.3 already provides a proof
of Theorem 2.6. Here we will prove Theorem 2.6 in the more general situation
where N is not reduced to a single peak and we also prove Theorem 2.7.

Recalling the definition of the setM in (2.19), observe thatM⊂ N . In the
sequel we set K := cardN and assume that N = {1, ..,K}.

Now recall, E1(ε) > E2(ε) ≥ .. ≥ Ek(ε) ≥ .. denotes the sequence of eigen-
values of the operator Mε as defined in (5.26). Next, due to Proposition 5.1
there exists some constant κ > 0 such that for all 0 < ε << 1 one has

dist ({E1(ε), .., EK(ε)} ;σ (Mε) \ {E1(ε), .., EK(ε)}) ≥ κε.

For j = 1, . . . ,K, we also denote by ψεj ∈ L2
(
RN
)

the normalized eigenvector
of the operator Mε associated to the eigenvalue Ej(ε).

Now fix s ∈ (0, s0) small enough such that

B
(
x0
j , s
)
⊂ Ω, ∀j ∈ N .

And, for each j ∈ N let us consider F1,j(ε) ∈ R and uεj ∈ L2
(
B(x0

j , s)
)

the

principal eigenvalue and the normalized (in L2) principal eigenvector of the
operator Mε,s

j as defined in (6.36). For notational simplicity we write Fj(ε)
instead of F1,j(ε).

Then our next result reads as follows:

Theorem 7.1 For each ε > 0 small enough, there exists a bijection bε from
{E1(ε), .., EK(ε)} into {F1(ε), .., FK(ε)} such that we can find σ > 0 with

bε(λ) = 1− λ+O
(
e−

σ
εγ0

)
.

Before proving Theorem 7.1, let us observe that as a consequence of this result,

E1(ε) = 1−
K

min
j=1

Fj(ε) +O
(
e−

σ
εγ0

)
.

Recalling the asymptotic expansion of Fj(ε) obtained in (6.37), this ensures that

Fj(ε) = Fk(ε) +O (ε∞) , ∀j, k ∈M,
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and

E1(ε) ∼ 1 +

∞∑
k=0

ε1+kλ2k,j , ∀j ∈M.

Finally recalling that λε, the principal eigenvalue of Lε coincides with E1(ε)
(see Section 4). This completes the proof of Theorem 2.6 by recalling that the

above computations are performed with Ψ̂ = Ψ/‖Ψ‖∞.
We shall now focus on proving Theorem 7.1. This proof will follow from

several steps.
For each j ∈ N , let us denote by χsj the characteristic function of the ball

B
(
x0
j , s
)
. Next our first lemma reads as follows

Lemma 7.2 There exists η > 0 such that, for all j ∈ N and ε > 0 small enough
one has:

(1−Mε)
(
χsju

ε
j

)
= Fj(ε)

(
χsju

ε
j

)
+ rj , a.e. x ∈ RN ,

where the remainder rj satisfies

‖rj‖L2(RN ) = O
(

exp
(
− η

εγ0

))
. (7.45)

Proof. Note first that one has

(1−Mε)
(
χsju

ε
j

)
(x) = χsj(x)Mε,s

j

[
uεj
]

(x) + rj(x), a.e. x ∈ RN ,

wherein the remainder rj takes the form

rj(x) = −χsj(x)Θ(x)

∫
B(x0

j ,s)
mε(x− y)Θ(y)uεj(y)dy, ∀x ∈ RN .

Now recalling that
Mε,s
j

[
uεj
]

= Fj(ε)u
ε
j ,

we get
(1−Mε)

(
χsju

ε
j

)
= Fj(ε)

(
χsju

ε
j

)
+ rj .

Now let us focus on proving (7.45). To that aim observe that one has, for all
x ∈ RN :

|rj(x)| ≤M0‖Θ‖2∞χsj(x)

∫
B(x0

j ,s)
ε−Ne−

‖x−y‖γ0+η1‖y−x
0
j‖

εγ0

(
e
η1‖y−x

0
j‖

εγ0 uεj(y)

)
dy.

Here η1 is the constant provided by Theorem 6.1. Hence Hölder inequality
yields, for all x ∈ RN :

|rj(x)|2 ≤M2
0 ‖Θ‖4∞χsj(x)

∫
B(x0

j ,s)
ε−2Ne−2

‖x−y‖γ0+η1‖y−x
0
j‖

εγ0 dy×
∥∥∥∥e η1‖.−x

0
j‖

εγ0 uεj

∥∥∥∥2

L2(B(x0
j ,s))

.
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Due to Theorem 6.1, there exists some constant C > 0 such that for all ε > 0
small enough one has

|rj(x)|2 ≤ Cχsj(x)

∫
B(x0

j ,s)
ε−2Ne−2

‖x−y‖γ0+η1‖y−x
0
j‖

εγ0 dy, ∀x ∈ RN .

In the sequel of this proof C > 0 denotes a constant, independent of ε, that may
change from line to line. Now fix σ > s. Then one has for all x ∈ RN such that
‖x− x0

j‖ ≥ σ:

|rj(x)|2 ≤ C
∫
‖y−x0

j‖≤s
ε−2Ne−2

‖x−x0
j‖
γ0(1−‖x−x0

j‖
−1‖y−x0

j‖)
γ0+η1‖y−x

0
j‖

εγ0 dy

≤ C
∫
‖y−x0

j‖≤s
ε−2Ne−2

‖x−x0
j‖
γ0(1− s

σ )
γ0

εγ0 dy

≤ Cε−2N exp

(
−2
‖x− x0

j‖γ0
(
1− s

σ

)γ0

εγ0

)
.

Next, one gets for all x ∈ RN such that s ≤ ‖x− x0
j‖:

|rj(x)|2 ≤ C
∫
‖y−x0

j‖≤
s
2

ε−2Ne−2
‖x−x0

j‖
γ0(1−‖x−x0

j‖
−1‖y−x0

j‖)
γ0+η1‖y−x

0
j‖

εγ0 dy

+ C

∫
s
2≤‖y−x

0
j‖≤s

ε−2Ne−2
‖x−x0

j‖
γ0(1−‖x−x0

j‖
−1‖y−x0

j‖)
γ0+η1‖y−x

0
j‖

εγ0 dy

≤ C
∫
‖y−x0

j‖≤
s
2

ε−2Ne−2 sγ0
2γ0εγ0 dy + C

∫
s
2≤‖y−x

0
j‖≤s

ε−2Ne−
η1s

εγ0 dy

≤ Cε−2N

[
exp

(
−21−γ0sγ0

εγ0

)
+ exp

(
−η1s

εγ0

)]
.

Coupling the above estimate completes the proof of (7.45) and thus the proof
of Lemma 7.2.

Using the above lemma we are now in position to prove Theorem 7.1. For
that purpose let us fix 0 < σ < η. Here η is the constant provided by Lemma
7.2 above. Next applying Proposition 5.1 to the operators Mε,s

j with j ∈ N and
Mε, one obtains that there exist κ > 0 and κ1 > 0 with 2κ1 < κ such that, for
all ε << 1 small enough, one has for all θ ∈ [0, κ1]:

σ (1−Mε) ∩ [θε, (κ− θ) ε] = {1− Ek(ε), k = 1, ..,K} ,
σ
(
Mε,s
j

)
∩ [θε, (κ− θ) ε] = {Fj(ε)}, ∀j ∈ N .

Now setting Iε =
[
κ1

2 ε,
(
κ− κ1

2

)
ε
]
, the above statement re-writes asσ (1−Mε) ∪

K⋃
j=1

σ
(
Mε,s
j

) ∩ [(Iε +
[
−κ1ε

2
,
κ1ε

2

])
\ Iε

]
= ∅.
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Next following Chapter 6 in [34], we set aε = e−
σ
εγ0 and we consider, for any

fixed ε > 0 small enough, disjoint intervals I1, .., INε ⊂ Iε such that

{1− E1(ε), .., 1− EK(ε), F1(ε), .., FK(ε)} ⊂ ∪Nεk=1Ik,

dist (Ik, Ik′) ≥ 2aε, ∀k 6= k′ and
Nε
sup
k=1
|Ik| = O (aε) .

Consider now for k = 1, .., Nε the sets of index

Jk = {j ∈ {1, ..,K} : Fj(ε) ∈ Ik} and Lk = {j ∈ {1, ..,K} : 1− Ek(ε) ∈ Ik},

as well as the vectors subspaces of L2(RN ) defined by

Ek =
⊕
j∈Jk

span
(
χsju

ε
j

)
and Fk = span

{
ψεj , j ∈ Lk

}
.

Together with the above notation, the proof of Theorem 7.1 directly follows
from the following claim:

Claim 7.3 The following holds true:

card Jk = cardLk, ∀k = 1, .., Nε.

Proof of Claim 7.3. Let us observe that

Nε∑
k=1

card Jk =

Nε∑
k=1

cardLk = K.

Hence in order to prove the above claim, it is sufficient to prove that

card Jk ≤ cardLk, ∀k = 1, .., Nε.

To that aim, consider ΠEk and ΠFk the spectral (orthogonal) projectors on Ek
and Fk respectively. Next in order to prove the above collection of inequalities,
it is sufficient to prove that there exists σ′ > 0 such that, for all k = 1, .., Nε
and all ε > 0 small enough, one has

‖ΠEk −ΠFkΠEk‖ = O

(
exp

(
− σ′

εγ0

))
.

These estimates follow from the results derived in [16] (see Proposition 2.5 of
this paper). Indeed, if k ∈ {1, .., Nε} is given such that card Jj ≥ 1 then because
of Lemma 7.2 one obtains

‖ΠEk −ΠFkΠEk‖ = O

(
1

aε
exp

(
− η

εγ0

))
= O

(
exp

(
−η − σ

εγ0

))
,

and the result follows since η − σ > 0.
We now turn to the proof of Theorem 2.7.

40



Proof of Theorem 2.7. Here recall that we have assumed that M = {i} ⊂ N .
Next observe that there exist some power m0 ≥ 1 and some constant κ > 0 such
that for all ε > 0 small enough:

dist (1− E1(ε), σ (1−Mε) \ {1− E1(ε)}) ≥ κεm0 .

Using the notation introduced above, this implies that there exists kε ∈ {1, .., Nε}
such that

1− E1(ε), Fi(ε) ∈ Ikε and card Jkε = cardLkε = 1.

Due to the proof of Claim 7.3, one gets, for k = kε and some σ > 0, that for ε
small enough:

‖ΠEk −ΠFkΠEk‖ = O
(

exp
(
− σ

εγ0

))
.

This re-writes as follows:

χsiu
ε
i − 〈χsiuεi , ψε1〉ψε1 = O

(
exp

(
− σ

εγ0

))
in L2(RN ).

Here the symbol 〈., .〉 is used to denote the usual inner product in L2(RN ).
Taking the L2−norm implies that

|〈χsiuεi , ψε1〉| = 1 +O
(

exp
(
− σ

εγ0

))
,

so that
ψε1 = χsiu

ε
i +O

(
exp

(
− σ

εγ0

))
in L2(RN ).

Now recall that
E1(ε)ψε1 = Mε [ψε1] .

Hence it follows from Young convolution inequality for the convolution product
that for some constant κ > 0:

‖ψε1‖L1(RN ) ≥ κε
−N/2.

Thus, setting ψ̃ε = ‖ψε1‖
−1
L1(RN ) ψ

ε
1, one gets

E1(ε)ψ̃ε = Mε

[
ψ̃ε
]
,

and

E1(ε)ψ̃ε = ‖ψε1‖
−1
L1(RN )Mε [χsiu

ε
i ] +O

(
ε−N exp

(
− σ

εγ0

))
in L1(RN ).

However, using the same argument and computations as in the proof of Lemma
7.2, one obtains that there exists σ′ > 0 such that

Mε [χsiu
ε
i ] = χsiu

ε
i +O

(
exp

(
− σ′

εγ0

))
in L1(RN ).
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As a consequence, we get for some σ′′ > 0 that

E1(ε)ψ̃ε = ‖ψε1‖
−1
L1(RN ) χ

s
iu
ε
i +O

(
exp

(
− σ

′′

εγ0

))
in L1(RN ).

Now let us fix η ∈ (0, γ0). Recalling Theorem 6.1 (for uεi ) one gets, using Hölder
inequality, that there exists some constant C > 0 such that, for all ε > 0 small
enough, it holds:

E1(ε)

∫
RN\B(x0

i ,ε
ν)

ψ̃εdx ≤ C
[∫

εν≤y≤s
exp

(
−2η1

‖y‖
εγ0

)
dy

] 1
2

+O

(
exp

(
− σ

′′

εγ0

))
.

As a consequence, we get

E1(ε)

∫
RN\B(x0

i ,ε
ν)

ψ̃εdx = O
(
exp

(
−η1ε

ν−γ0
))

Since E1(ε) → 1 as ε → 0, this proves the expected concentration property
for the function ψ̃ε. Finally, Theorem 2.7 follows from the link between the
principal eigenvector of Lε and Mε discussed in Remark 4.2 together with the
above concentration property.
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[21] Klein, M., Lonard, C. and Rosenberger, E., 2014. Agmon-type estimates
for a class of jump processes. Math. Nachr., 287, pp. 2021-2039.

[22] Lannou, C., 2012. Variation and selection of quantitative traits in plant
pathogens. Annu. Rev. Phytopathol., 50, pp. 319-338.

[23] McDonald, B.A. and Linde, C., 2002. Pathogen population genetics, evo-
lutionary potential, and durable resistance. Annu. Rev. Phytopathol., 40,
pp. 349-379.

[24] Montarry, J., Hamelin, F.M., Glais, I., Corbière, R. and Andrivon, D.,
2010. Fitness costs associated with unnecessary virulence factors and life
history traits: evolutionary insights from the potato late blight pathogen
Phytophthora infestans. BMC Evol. Biol., 10, pp. 1-9.

[25] Mirrahimi, S., Perthame, B., Bouin, E. and Millien, P., 2011. Popula-
tion formulation of adaptative meso-evolution: theory and numerics. In
The mathematics of Darwin’s legacy, 159-174, Math. Biosci. Interact.,
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[41] Zhan, J., Thrall, P.H., Papäıx, J., Xie, L. and Burdon, J.J., 2015. Play-
ing on a pathogen’s weakness: using evolution to guide sustainable plant
disease control strategies. Annu. Rev. Phytopathol., 53, pp. 19-43.

45


