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Eusocial Hymenoptera colonies are characterized by the presence of altruistic individuals,

which rear their siblings instead of their own offspring. In the course of evolution,

such sterile castes are thought to have emerged through the process of kin selection,

altruistic traits being transmitted to following generation if they benefit relatives. By

allowing kinship recognition, the detection of cuticular hydrocarbons (CHCs) might be

instrumental for kin selection. In carpenter ants, a female-specific olfactory subsystem

processes CHC information through antennal detection by basiconic sensilla. It is still

unclear if other families of eusocial Hymenoptera use the same subsystem for sensing

CHCs. Here, we examined the existence of such a subsystem in Vespidae (using

the hornet Vespa velutina), a family in which eusociality emerged independently of

ants. The antennae of both males and female hornets contain large basiconic sensilla.

Sensory neurons from the large basiconic sensilla exclusively project to a conspicuous

cluster of small glomeruli in the antennal lobe, with anatomical and immunoreactive

features that are strikingly similar to those of the ant CHC-sensitive subsystem.

Extracellular electrophysiological recordings further show that sensory neurons within

hornet basiconic sensilla preferentially respond to CHCs. Although this subsystem is not

female-specific in hornets, the observed similarities with the olfactory system of ants are

striking. They suggest that the basiconic sensilla subsystem could be an ancestral trait,

which may have played a key role in the advent of eusociality in these hymenopteran

families by allowing kin recognition and the production of altruistic behaviors toward

relatives.

Keywords: brain evolution, eusociality, social insect, cuticular hydrocarbons, antennal lobe, olfaction

INTRODUCTION

Eusociality is the highest level of social organization, in which some colony members forego their
own reproduction to raise the offspring of their kin. The emergence of these non-reproductive
castes has been mostly interpreted as the result of a kin selection process, the benefit of helping
closely related individuals enabling the transmission of altruistic traits (Hamilton, 1964). High
genetic proximity among relatives therefore seems critical for the evolution of eusociality and thus
the haplodiploid sex determination system of Hymenoptera may have been instrumental for the
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several independent advents of eusociality in this order
(Hamilton, 1964; Hughes et al., 2008). However, evolution
from a solitary life style to a eusocial organization could only
have occurred if these insects benefited from an efficient kin
recognition system which prevented costly altruistic acts toward
non-related individuals.

Many insect species use long chain cuticular hydrocarbons
(CHCs) as recognition signals providing essential information
about species membership and fertility status (Howard and
Blomquist, 2005; Blomquist and Bagnères, 2010). Eusocial
Hymenoptera generally use CHC profiles to discriminate
nestmates from non-nestmates (Ruther et al., 2002; d’Ettorre
and Lenoir, 2010), and in some species CHCs have evolved
as queen pheromones, advertising fecundity and/or suppressing
worker reproduction (Van Oystaeyen et al., 2014; Oi et al., 2015).
Therefore, CHCs might have been an ancestral signals required
for the emergence of colony-specific altruism and reproductive
division of labor (Kather and Martin, 2015). Insects detect these
low volatile compounds at very short range (0 to ∼1 cm) when
approaching another individual with their antennae (Anton and
Gnatzy, 1998; Brandstaetter et al., 2008). In ants, this detection
involves a particular type of cuticular antennal structure, the
sensillum basiconicum (Ozaki et al., 2005; Sharma et al., 2015).
These sensilla usually house numerous olfactory sensory neurons
(more than 130 in C. japonicus; Nakanishi et al., 2009), which
project to a recognizable group of small glomeruli in the antennal
lobe (AL), the primary olfactory processing center of the insect
brain (Kelber et al., 2010; Nakanishi et al., 2010; McKenzie
et al., 2016). Remarkably, in ants basiconic sensilla and this
related cluster of glomeruli are female-specific (Nakanishi et al.,
2009, 2010; Mysore et al., 2010). In addition, this group of
glomeruli differs from those of other AL clusters in that it
lacks serotonin-immunoreactive fibers and its local interneurons
seem isolated from the rest of the AL (Zube and Rössler, 2008;
Nishikawa et al., 2012). Lastly, olfactory second-order neurons
(“projection neurons”) from this glomerular cluster innervate
segregated areas within higher-order centers, the lateral horn
and the mushroom bodies (Zube et al., 2008; Nishikawa et al.,
2012). All these observations suggest the existence in ants of a
dedicated olfactory subsystem involved in the processing of social
information related to female-specific tasks (Ozaki et al., 2005;
Nishikawa et al., 2012; Sharma et al., 2015).

Basiconic sensilla seem to be present in all hymenopterans
including social and solitary species (Walther, 1983). They are
mostly reported as female–specific sensilla but males of some
spheciform wasps (Hymenoptera, Sphecidae and Crabronidae)
present this sensillum type on their antennae (Herzner et al.,
2003). Although a CHC receptive function has been suggested
in some social and solitary species (Anton and Gnatzy, 1998;
Sharma et al., 2015), the central projections and the neuronal
network related to this sensillum have only been investigated
in very few species. To date, it thus remains unknown if the
basiconic sensilla-specific subsystem is ubiquitous among social
Hymenoptera and if it could have played a role in the advent
of eusociality in this insect order. A basiconic sensilla-specific
subsystem exists in ants (Formicidae, see above) and some data
suggest it may exist in Apis mellifera (Apidae) although in a

greatly diminished version (Kropf et al., 2014). No data are yet
available in Vespidae, although these insects represent a key
group for studying the evolution of eusociality, as they present
a wide range of social organizations, including solitary life, nest
sharing, reproductive dominance and eusociality (Hunt, 2007;
Pickett and Carpenter, 2010). Several studies have already shown
the importance of CHCs as recognition cues in social wasps but
how they are detected and processed in these species is as yet
unknown (Gamboa et al., 1986; Mitra et al., 2014; Oi et al., 2015).

Here, we investigated the existence of a CHC-specific
subsystem in the hornet Vespa velutina. First, using scanning
electron microscopy, we characterized antennal sensillar
equipment in V. velutina females and males, and demonstrate
the presence of basiconic sensilla. Using fluorescent tracers
and confocal microscopy, we explored the projections in the
antennal lobe of the sensory neurons housed in this sensillum.
Then, we studied the serotonin-like immunoreactivity of
the related glomerular cluster. Finally, we performed single
sensillum electrophysiological recordings to test whether hornet
basiconic sensilla sensory neurons respond to long-chain alkanes
belonging to their CHC profile (Martin et al., 2009). Our
results demonstrate the presence in hornets of an olfactory
subsystem involved in long-chain hydrocarbon processing,
highly similar to that found in ants. This observation suggests
that this recognition system may have already existed in the
last common ancestor of ants and wasps, which was solitary
(Johnson et al., 2013; Branstetter et al., 2017; Peters et al., 2017).
We discuss the possibility that the basiconic sensilla subsystem
may have represented a facilitating preadaptation for the advent
of eusociality in these hymenopteran families by allowing kin
recognition and the production of altruistic behaviors toward
relatives.

MATERIALS AND METHODS

Animals
Hornets (Vespa velutina) were collected on the campus of INRA-
Bordeaux Aquitaine from July to November or were obtained at
emergence from a comb artificially maintained in an incubator.
They were obtained from an important natural population with
high nest densities (Monceau and Thiéry, 2016). Males and
females (workers) were sorted by observing the presence of an
aedeagus or a sting, respectively, at the end of the last abdominal
segment. For each experiment, hornets were cold anesthetized on
ice for 10 min before further handling.

Scanning Electron Microscopy
Antennae were obtained by cutting off the base of the scape.
Samples were then fixed with 2.5% glutaraldehyde solution in
0.1 M phosphate buffered saline (PBS) at 4◦C for 24 h. After
three washes with PBS (10 min each), samples were dehydrated
with increasing concentrations of ethanol (from 50% to 3×
100%) at room temperature (10min each). Samples were then
dried at ambient air temperature under a hood and mounted
on aluminum stubs with double-sided sticky tape. The antennae
were sputter coated in argon plasma with platinum (∼30 nm
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thickness) in a Polaron SC 7640 device (Elexience, Verrières-le-
Buisson, France) at 10 mA and 0.8 kV for 200 s. Observations
were performed in an FE-SEM Hitachi S4500 (Hitachi, Tokyo,
Japan), with a low secondary electron detector, at 2 kV and
18 mm working distance, at the MIMA2 microscopy platform
(http://www6.jouy.inra.fr/mima2).

Selective Staining of OSNs from a Single
Basiconic Sensillum
Hornets were placed in Plexiglas holders and their antennae
were fixated horizontally with low melting point wax
(Deiberit 502, Schöps and Dr. Böhme, Goslar, Germany).
Preparations were placed under a macroscope (Z16 APO
A, Leica Microsystems, Wetzlar, Germany) to visualize and
identify a basiconic sensillum from the fourth to the eighth
antennal segment. Using a micromanipulator, sensilla were
approached with a glass electrode filled with 2% micro-ruby
(Dextran, Tetramethylrhodamine and biotin, 3,000 MW,
D-7162; Invitrogen, Eugene, OR) in distilled water. A single
basiconic sensillum on each antenna was perforated with the
electrode’s sharp tip, and then remained in contact to let the
dye diffuse for 3 h. The electrode was then removed and the
hornets were released in a breeding box with available food and
water, for 48 h in the dark. Then, the brains were dissected out
in 0.1M PBS solution and plunged into fixative solution (4%
paraformaldehyde in PBS) for 24 h at 4◦C.

Serotonin Immunohistochemistry
Hornet brains were dissected out in PBS and fixed for 24 h at
4◦C in 4% paraformaldehyde. The brains were washed 3 times
(10min each) in PBS solution containing 0.2% of Triton X-100
(PBST) and preincubated for 3 h at room temperature in PBST
with 10% normal goat serum (G9023, Sigma-Aldrich, Steinheim,
Germany), henceforth NGS/PBST, to avoid unspecific staining.
Tissues were probed with rabbit anti-serotonin primary antibody
(S5545, Sigma-Aldrich, Steinheim, Germany) diluted (1:250) in
NGS/PBST for 7 days at 4◦C. Then, the brains were washed 3
times (10min each) in PBST and incubated in Alexa-fluor 488-
conjugated goat anti-rabbit secondary antibody (A-11008, life
technologies; diluted 1:200 in NGS/PBST) for 7 days at 4◦C.
According to manufacturer data, pre-incubation of the primary
antibody with 500 µM serotonin inhibits specific staining.

Brain Preparations and Confocal Imaging
After selective staining of basiconic sensilla or after the
immunostaining procedure, brains were washed in PBS
(3 × 10min), dehydrated in series of increasing ethanol
concentrations (from 50% to 3 × 100% for 10 min each)
and clarified in methylsalicylate (Sigma-Aldrich, Steinheim,
Germany) for at least 3 days at 4◦C. Brains were then mounted
in the wells of aluminum slides filled with methylsalicylate and
covered from both sides with cover slips. Antennal lobes were
scanned with a laser-scanning confocal microscope (LSM-700;
Carl Zeis, Jena, Germany) equipped with a water immersion
objective (20× plan-apochromat 1.0 NA). The brains were
scanned at 1 µm intervals (z axis) creating confocal stacks of
1,024 × 1,024 (x,y) pixels, at a resolution of 0.45 µm/pixel.

Micro-ruby was revealed using a 555 nm solid-state laser. Alexa
fluor 488 or autofluorescence, depending on the experiment,
were revealed using a 488 nm laser.

Image Processing and 3D Reconstructions
Serial optical sections were saved as LSM files and opened
using ImageJ software with the Bio-Formats library plugin.
Brightness and contrast of images were adjusted before being
saved as TIFF files. Then, TIFF files were imported in three-
dimensional analysis software (AMIRA 5.4.3, VSG, Berlin,
Germany). Glomeruli were individually reconstructed by manual
labeling in three planes (xy, xz, and yz) and using the Wrap
function to obtain their 3D models. The number of stained
glomeruli was visually assessed by overlapping the 555 nm
wavelength image stacks with the background staining and
corresponding 3D reconstruction.

Electrophysiological Recordings from
Basiconic Sensilla
Single sensillum extracellular electrophysiological recordings
(SSR) were obtained from basiconic sensilla (type bs2) on the
antenna flagellum. Hornets were held in Plexiglas holders and
their antennae were fixed horizontally with low melting point
wax. The body of the hornet was electrically connected to
the ground by inserting a silver wire on or near the clypeus
covered with a drop of electrocardiogram gel (Redux electrolyte
Gel, Parker Laboratories, Fairfield, USA). One antenna was
placed in a humidified constant air stream (15 mL/s). The
end of an electrolytically sharpened tungsten wire was carefully
inserted at the base of a sensillum on flagelomers 6–10 using
a micromanipulator (Microstar, Scientifica UK). The tungsten
electrode was connected to a custom-built preamplifier (×10),
and further amplified (×100) and bandpass filtered at 10–
2,800Hz by a CyberAmp 320 amplifier (Axon Instruments,
USA). The filtered signal was digitally sampled at 10 kHz
(DT9816; Data Translation) and analyzed using a custom
software to observe and detect spikes (dbWave, Marion-Poll,
1996).

Odorant stimulations were performed with a stimulus
controller (CS05, Syntech, Germany) by blowing air during
5 s through a Pasteur pipette held ∼2 cm from the tip of
the sensillum being recorded. The Pasteur pipette contained
a filter paper (1 cm2) loaded with 5 µL of odorant solution.
We tested low-volatility long-chain hydrocarbons (alkanes) and
more volatile aliphatic compounds (short chain alcohols, ketones
and aldehydes). Alkanes (docosane, C22; pentacosane, C25 and
heptacosane, C27) were dissolved in hexane (50 µg/µL) and the
filter papers soaked with the solutions were maintained for 10
min under a constant air stream, to let the solvent evaporate.
For stimulations, the pipettes were first heated at 60◦C into an
incubator, for a few minutes to volatilize the chemicals, and used
immediately (see Carcaud et al., 2015). Control stimulations were
performed with solvent alone (5 µL hexane) heated at 60◦C, to
rule out mechanosensory or thermosensory responses. Volatile
aliphatic compounds (1-hexanol, C6ol; 2-nonanone, C9one and
nonanal, C9al) were presented pure at ambient temperature.
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In each sensillum we could record action potentials of
different amplitudes in a continuous distribution, reflecting the
large number of OSNs housed in this sensillar type (about 35
stained glomeruli). The spike detection threshold was adjusted by
zooming on portions of the data, in order to discriminate spiking
activity from random baseline fluctuations. The events detected
were considered as an estimate of the total spiking activity and
used as ameasure of sensillum activity (Sharma et al., 2015). Spike
frequency was measured in 100 ms bins for 15 s, 5 s before, 5 s
during and 5 s after the stimulus. To decide whether a stimulus
induced a significant activity, we compared the spike frequency
during the stimulus to the activity recorded for 5 s before the
stimulus. If activity during the stimulus presentation was above
noise, defined as 2 standard deviations (SD) of spike frequency
before the stimulus, it was considered as a response. For a
general evaluation of response intensity, we also represented
spike frequency as a number of SD above baseline at each 100 ms
bin (Figures 6E,F). Responses (in SD units, defined as the average
number of SD above baseline during stimulus presentation—gray
area in Figures 6E,F) were compared statistically among stimulus
types (long chain alkanes, volatiles, control) using a Kruskal-
Wallis test followed by Dunn post hoc tests, which include a
correction for multiple comparisons.

RESULTS

Sensilla Types and Their Distribution on the
Hornet Antenna
The antenna of V. velutina is classically composed of a scape, a
short pedicel and a flagellum, which contains 10 flagellomeres
in females and 11 in males (Figure 1A). The flagellomeres are
profusely covered with cuticular sensory structures called sensilla
(Figures 1B,C). A pair of bulging oval structures containing a
few hair-like sensilla are nevertheless present on the ventral
side of male flagellomeres (Figures 1C,D, 2B). These male-
specific structures, the tyloids (Romani et al., 2005) contain
large pores considered as excretory ducts involved in mating
behavior. Sensilla can be classified in several different types based
on their morphology (Zacharuk, 1980). We did not observe
any marked sexual dimorphism with regards to the sensilla
types and their distribution patterns over flagellar segments
(Figure 2). Overall, 9 sensilla types were identified on the hornet
antenna (detailed description in Supplementary Text 1). We
found two types of trichoid sensilla (Figure 1E, olfactory and/or
mechanosensory), two types of placode sensilla (Figure 1F, most
probably olfactory), two types of chaetic sensilla (Figure 1G,
possibly gustatory) and coeloconic sensilla (Figure 1G, possibly
involved in hygro- and thermo-reception). Most importantly for
this study, we observed two types of basiconic sensilla, which
consist of a peg on a socket (Figures 1H,I). Basiconic sensilla
1 are long and slender with a smooth surface perforated by
numerous minute pores especially in the tip region (Figure 1H).
This sensillum type is found only on the dorsal antennal
surface, mostly grouped in the proximal regions of the last
flagellomeres (Figure 2). Basiconic sensilla 2 have a much
larger base, exhibiting ridges (Figure 1I). The sensillum tip

has a smooth, possibly porous surface, which was alternatively
observed with a flat or inwardly bent shape, and often displayed
a large terminal hole (Figure 1I). These sensilla are particularly
densely represented on the dorsal surface of the last flagellomers
and become progressively sparser toward proximal segments
in both sexes (Figure 2). Given their dorso-apical distribution
and their singular morphological features, we hypothesized that
basiconic sensilla 2 may have a contact chemosensory function
and be homologous to the CHC-sensitive basiconic sensilla of
ants (Ozaki et al., 2005; Nakanishi et al., 2009; Sharma et al.,
2015).

Central Projections of Sensory Neurons
from Basiconic Sensilla 2
Mass staining of the antennal nerve revealed nine axon bundles
which project to ∼265 olfactory glomeruli in the V. velutina
antennal lobe. These olfactory sensory tracts, termed TA–
TI(Couto et al., 2016), innervate nine distinct clusters of
glomeruli, with similar innervation pattern in males and females
(Figure 3). We investigated the projection pattern of sensory
neurons from basiconic sensilla 2, using specific single sensillum
staining. Basiconic sensilla 2 were easily recognizable under the
microscope, so that a glass electrode filled with fluorescent dye
could be inserted into a single sensillum (inset in Figure 4A).
When sensory neurons were particularly brightly labeled, OSNs
could be traced from the antennal sensory tract to their
glomerular termination (Figure 4A, Supplementary Movie 1).
The stained axons run roughly in parallel within the antenna until
they all suddenly intermingle and eventually split up forming
an axon sorting-zone at AL entrance (SZ in Figure 4A). Within
each glomerulus, each axon formed a claw-like innervation,
penetrating the glomerulus’ outer rim (cortex, Figures 4A,B).
In all preparations (n = 5 males and 5 females), the stained
OSNs projected to a restricted region on the dorso-caudal side
of the AL, innervating many small glomeruli of the TB cluster.
We used the most brightly stained preparations to assess the
number of glomeruli innervated by the OSNs contained in a
single basiconic sensillum (n = 1 in each sex). At least 36
glomeruli were stained in the female, corresponding to ∼37.5%
of the 96 TB glomeruli (Figures 4C,D). Similarly in the male,
OSNs from a single basiconic sensillum projected to at least
29 glomeruli out of 80, corresponding to 36.2% of the TB

cluster (Figures 4E,F). These data suggest that basiconic sensilla
2 contain approximately 35 sensory neurons, which project
exclusively into the TB glomerular cluster.

Serotonin-Immunoreactivity in the
Antennal Lobe
The restricted innervation of a group of dorso-caudal glomeruli
by sensory neurons from basiconic sensilla observed here in
hornets is reminiscent of a similar structure in the antennal
lobe of ant workers (Zube and Rössler, 2008; Mysore et al.,
2009; Kelber et al., 2010; Nakanishi et al., 2010). In ants, the
corresponding T6 cluster contrasts with other glomerular clusters
by a lack of serotonin immunoreactive fibers (Zube and Rössler,
2008; Nakanishi et al., 2010). We thus checked whether this
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FIGURE 1 | Structure of the antenna in Vespa velutina and its sensillar equipement. (A) Schematic representation of a hornet head. The bending angle between the

scape and the pedicel defines the medial side of the antenna. The antenna comprises 10 flagellomeres in workers and 11 in males. r, rostral; c, caudal. (B,C) Scanning

electron micrographs of the last flagellomeres in female and male, respectively. The male antenna harbors 2 tyloid structures on each flagellum. (D) Tyloids are cuticular

bumps on which only rare trichoid and chaetic sensilla were observed. (E–I) Scanning electron micrograph of antennal sensilla in V. velutina. We identified nine distinct

morphological types of antennal sensilla: tr, trichoid; pl, placode; ch, chaotic; co, coeloconic; bs, basiconic. See detailed description in Supplementary Text 1.

feature is also present in hornets. Using immunohistochemistry
and an established antibody against serotonin, we observed
widespread serotonin-like immunoreactivity throughout the

hornet brain, and in the antennal lobe (Figure 5). All our
stainings, both in females (n = 10, Figures 5A,C) and males
(n = 5, Figures 5B,D), showed a clear dichotomy in the
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FIGURE 2 | Distribution of sensilla on the antennae of female (A) and male (B) V. velutina. Trichoid and placode sensilla are homogeneously distributed on the whole

flagellum and are indicated by a gray background. The general locations of other sensilla types, which are not homogeneously distributed, are indicated by symbols.

For example, basiconic sensilla (bs, red and green triangles) are densely present on the dorso-medial side of the antenna especially in the distal part but become

sparser on the ventro-lateral side. tr, trichoid; pl, placode; ch, chaetic; co, coeloconic; bs, basiconic.

serotonin-like immunoreactivity of the V. velutina antennal
lobe. Ventral and dorso-rostral glomeruli corresponding to TA,
and TC to TI exhibited a clear and homogenous serotonin-like
innervation while no labeling was observed in the glomeruli
situated in the dorso-caudal area corresponding to the TB cluster
(Figures 5C,D).

Electrophysiology
Using the single sensillum extracellular recording (SSR)
technique (Sharma et al., 2015), a total of 45 basiconic sensilla 2
located between the 6th and the 10th flagellum segments were
recorded in 15 workers. A panel of three cuticular hydrocarbons
(docosane, pentacosane, and heptacosane), three volatile
aliphatic odorants (1-hexanol, 2-nonanone, and nonanal) and
a control were presented. In most cases (n = 37 sensilla), the
sensillum did not respond to any of the tested stimuli. Because
of the hard cuticle of the sensillum, electrode insertion was
difficult and may sometimes have damaged the sensory neurons.
Alternately, our odor panel may not contain odorants activating
this sensillum. In the remaining cases (n = 8 sensilla), clear
responses to one or a few stimuli were recorded (Supplementary
Figure 1, Supplementary Table 1). These responses appeared
mostly for the long-chain alkanes, with three sensilla responding
to docosane, two sensilla responding to pentacosane and four
to heptacosane (two sensilla responded to both C25 and C27).
As observed in ants (Sharma et al., 2015), basiconic sensilla
2 sometimes also responded to volatile compounds, with two

sensilla responding to 2-nonanone, one to 1-hexanol and two
to nonanal (Supplementary Table 1). In the same conditions,
no responses were observed to the controls, except for one
sensillum that responded once to the stimulation with a heated
pipette (Supplementary Table 1). Thus, the observed responses
to alkanes were not mechano- or thermosensory responses and
were not due to the hexane solvent. Two sensilla (#1 and #5),
gave particularly robust recordings (Figures 6A–C). Sensillum
#1, located on the 7th flagellomere responded to C25, C27 and
2-nonanone but not to the other odorants or to the control
(Figure 6A). Sensillum #5, located on the 8th segment showed
clear and reproducible responses to C27 but not to the other
odorants or to the control (Figures 6B,D). We represented
in Figure 6E the recorded responses to each stimulus and
to the control relative to noise, in SD (standard deviation)
units (number of SD of the signal relative to baseline, n = 8
sensilla). While the three tested long-chain alkanes induced peak
responses above 3 SD, the three volatiles induced responses below
3 SD (Figure 6E). Consequently, the average response to alkanes
during the stimulus was statistically higher than the responses
to volatiles and to the control (Figure 6F; Kruskal-Wallis test, H
= 13.55, p < 0.01; multiple comparisons (Dunn test): l.c. alkane
vs. control, p < 0.01; l.c. alkane vs. volatile, p < 0.01; volatile vs.
control, p= 1.0, NS). Thus, OSNs contained in basiconic sensilla
2 respond preferentially to long-chain alkanes that are typically
found in the cuticular hydrocarbon profiles of hornets (Martin
et al., 2009).
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FIGURE 3 | Antennal lobe organization in female and male V. velutina. (A,B)

Projection view (60 µm thickness) from the ventral surface of (A) a female

antennal lobe (depth: 160–220 µm) and (B) a male antennal lobe (depth:

240–300 µm). (C–F) 3 dimensional reconstructions of the antennal lobes of

females (C,E) and males (D,F). The antennal lobes are represented as seen

from the ventral side (C,D) or the dorsal side (E,F). The V. velutina antennal

lobe contains nine glomerular clusters termed TA – TI (color coded in C–F) in

both females and males (Couto et al., 2016). The TB cluster is formed by a

tight group of small glomeruli in the dorso-caudal region of the antennal lobe. r,

Rostral; c, caudal; l, lateral; m, medial; AN, antennal nerve.

DISCUSSION

Analyzing the antennal sensory equipment of the hornet Vespa
velutina, we found clear correspondences with the major
classes of sensilla described in ants and bees, and identified
two basiconic sensilla types. The sensory neurons housed in
basiconic sensilla type 2 exclusively project to a cluster of small
glomeruli in the AL of both males and females. This glomerular
cluster contrasts with other AL regions by a lack of serotonin
immunoreactive fibers. Finally, electrophysiological recordings
of single basiconic sensilla suggest that they preferentially
respond to low volatile hydrocarbons. Hornets thus possess a very
characteristic olfactory subsystem involved in CHC processing.
From the peripheral sensory equipment (sensilla) to the central
neuronal organization (glomeruli) this sensory pathway is highly
similar to that found in ants.

FIGURE 4 | Central projection of sensory neurons from basiconic sensilla 2.

(A) Projection view (210 µm thickness) showing the central projections of the

sensory neurons from a single basiconic sensillum 2 on the 4th flagellum

segment. Note the presence of a sorting zone (SZ) at the AL entrance.

Location of the TB cluster is indicated by a dashed line. Inset: basiconic

sensilla 2 were easily recognizable under optical control, thanks to their large

size and conic shape. (B) Projection view (5µm thickness) showing stained (S)

and not stained (NS) antennal lobe glomeruli from the TB cluster

(autofluorescence in green) after staining of a basiconic sensillum 2 (magenta).

(C,E) Confocal optical sections through a female (C) and a male antennal lobe

(E) after staining of a single basiconic sensillum. The TB cluster receives

projections from basiconic sensilla sensory neurons (in magenta) in both

sexes, and no staining appeared in other regions of the AL. (D,F) 3D

reconstructions of the female and male antennal lobes shown in (C,F),

respectively. Stained glomeruli are represented in red and unstained glomeruli

are shown in green. Glomeruli from other AL regions are transparent. Note that

the 3D reconstructions present only a portion of non-TB glomeruli. r, rostral; c,

caudal; l, lateral; m, medial; AN, antennal nerve.

Homology of Glomerular Clusters
Neuroanatomical studies have pointed out striking similarities
in AL organization across different Hymenoptera, especially
concerning the division of the antennal nerve in different tracts
projecting into distinct clusters of glomeruli (Zube et al., 2008;
Nishino et al., 2009; Couto et al., 2016). A currently debated
question is whether morphologically similar AL clusters across
different species are indicative of conserved olfactory structures
(homologous clusters), or if they are the result of convergent
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FIGURE 5 | Serotonin-like immunoreactivity in the V. velutina antennal lobe.

Projection views (80 µm thickness) of a female (A,C) and a male antennal lobe

(B,D) after immunohistochemistry with an antibody against serotonin.

Glomeruli from the dorso-caudal region of the antennal lobe corresponding to

the TB cluster do not show any immunoreactivity compared to other AL

regions (C,D), which present a dense mesh of immunoreactive processes in

both females and males. r, rostral; c, caudal; l, lateral; m, medial; AN, antennal

nerve.

evolution. Our study unraveling compelling similarities between
the hornet TB cluster and the female-specific T6 cluster in
the AL of ants, point to a homology. Indeed, in both species
sensory neurons of basiconic sensilla exclusively project into
a dorso-caudal cluster containing numerous small glomeruli
(Nakanishi et al., 2009, 2010; Kelber et al., 2010). Olfactory
information processed within this subsystem is further conveyed
to higher-order centers by the median tract of uniglomerular
projection neurons (m-ALT) in ants as well as in wasps
(Zube et al., 2008; Couto et al., 2016). In addition to similar
input-output connectivity, the rare immunoreactive profile of
this glomerular cluster suggests that innervations of local AL
neurons are alike. In ant workers, the T6 cluster is the only
subdivision of the AL that lacks serotonin immunoreactive
fibers (Zube and Rössler, 2008; Nakanishi et al., 2010). We
found the same feature for the TB cluster of both male and
female hornets, as it was devoid of serotoninergic fibers whereas
the rest of the AL was homogeneously stained. Similarly, a
previous study showed differential reactivity to dehydrogenase
and acetycholinesterase in two similar subregions of the antennal
lobes of the ant, Camponotus vagus and the vespid wasp
Polistes gallicus (Masson and Strambi, 1977). Although we cannot
exclude that the resemblance between the ant T6 and the hornet
TB subsystems could be the result of convergent evolution,
the striking similarities we observed, involving several different
neuronal populations from the periphery to the central brain,

make this hypothesis unlikely. Our data rather suggest that the
vespid wasp and the ant ALs contain a homologous olfactory
subsystem for CHC detection.

Function of the TB Glomerular Cluster
In ants, there is accumulating evidence that the basiconic
sensilla subsystem is involved in CHC processing (Ozaki
et al., 2005; Sharma et al., 2015). Using single sensillum
electrophysiological recordings, we obtained odor-evoked
responses in hornet basiconic sensilla 2, which respond more
strongly to long-chain alkanes than to other tested stimuli.
This suggests that this homologous subsystem in hornets
and ants may have conserved a similar function, namely to
detect and process CHC information. Interestingly, hornet
basiconic sensilla also displayed responses to volatile aliphatic
compounds (Figure 6, Supplementary Table 1). This pattern
is similar to that observed in ants, although these insects’
basiconic sensilla appear more broadly tuned than hornets’
(Sharma et al., 2015). This difference may be explained by
discrepancies between species in the number of sensory neurons
housed in basiconic sensilla. We were not able to precisely
assess the number of sensory neurons within a basiconic
sensillum, but a range of 30–40 was reported in closely
related Vespidae species (Lacher, 1964). This observation fits
with our counts of ∼35 labeled glomeruli after staining of a
single sensillum (Figures 4D,F). Comparatively, carpenter ant
basiconic sensilla contain at least 130 OSNs (Nakanishi et al.,
2009). More sensory neurons participating in the recorded
activity may broaden the apparent response profile of the
sensillum.

What could be the function of a CHC-sensitive olfactory
subsystem in the biology of hornets? Social wasps are known
to use CHCs for the discrimination of nestmates from non-
nestmates at the nest entrance (Gamboa et al., 1986; Ruther
et al., 2002; van Zweden and d’Ettorre, 2010). In the common
wasp, Vespula vulgaris, some CHCs have also been shown
to act as queen pheromones, advertising the queen’s fertility
status (Van Oystaeyen et al., 2014; Oi et al., 2015). These
signals also seem to be involved in worker policing, allowing
the recognition by workers of eggs that were not laid by the
queen (Foster et al., 2002; Oi et al., 2015). Lastly, these cues
might also convey information about a workers’ task and be
involved in task allocation, as observed in ants (Greene and
Gordon, 2003). Thus, an efficient CHC-processing system should
be crucial for Vespidae social biology, as a basis for nestmate
discrimination, caste differentiation, worker policing and task
allocation.

A CHC-Processing Subsystem in Males
One feature differed markedly between the CHC subsystems
of hornets and ants: male hornets present numerous basiconic
sensilla, whereas these are frequently absent in the males
of numerous solitary and social Hymenoptera [Formicidae:
carpenter ants (Nakanishi et al., 2009; Mysore et al., 2010);
Apidae: honey bees (Esslen and Kaissling, 1976); bumble
bees (Ågren and Hallberg, 1996); Eucera (Streinzer et al.,
2013); Colletidae (Ågren, 1977); Andrenidae (Ågren, 1978);
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FIGURE 6 | Single sensillum recording from basiconic sensilla 2. (A) Responses of sensilla #1 (A) and #5 (B) to 5 s presentations of 3 long-chain alkanes (docosane,

C22; pentacosane, C25; heptacosane, C27), one volatile aliphatic odorant (nonanal, C9al) and a hot hexane control. (C) Average spiking activity to the different stimuli

throughout a trial, showing a phasic reponse for sensillum #1 and a tonic response for sensillum #5. (D) Reproducibility of the response of sensillum #5 to

heptacosane, shown at 3 different trials with this odorant and with the control. (E,F) Average response of the eight basiconic sensilla represented as the number of

standard deviations (a measure of noise) above baseline, to the different odorant stimulations. Inset in (F): Distribution of average responses (in SD units) recorded

during the stimulus (gray area in F) for each stimulus type. Long chain alkanes (l. c. alkane) induce stronger responses than volatile odorants (**p < 0.01, Dunn post

hoc test after Kruskal Wallis test).
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Trichogrammatidae (Amornsak et al., 1998)]. However, some
spheciform wasps (Hymenoptera, Sphecidae, and Crabronidae)
show the presence of basiconic sensilla in males (Walther, 1983;
Herzner et al., 2003). Since the latest phylogenetic analyses
indicate that vespoid wasps are basal to ants (Branstetter et al.,
2017; Peters et al., 2017), our observations suggest that the
presence of basiconic sensilla in males might be the ancestral
trait. Accordingly, male hornets display a TB cluster that was
identical to that of females (Figures 3–5). In ants, the lack of
a CHC-specific system in males was explained by their low
involvement in social tasks, the males being utterly focused on
mating (Nakanishi et al., 2009; Nishikawa et al., 2012). Mating
in hornets is thought to take place on a hard substrate, possibly
on the nest envelope (Batra, 1980). While they use volatile
queen-emitted sex pheromones (Ono and Sasaki, 1987; Spiewok
et al., 2006), copulation only occurs after the male has had the
opportunity to touch the female with its antennae (Batra, 1980).
This suggests that low volatile compounds, possibly CHCs, could
be involved in the decision by the male to copulate with a given
female, recognizing its fertility but also avoiding inbreeding.
As different hornet species are thought to share the same sex
pheromones (Ono and Sasaki, 1987) it may also participate
in pre-mating reproductive isolation, avoiding mating across
species.

The Evolution of CHC Detection and
Eusociality
A sensory system allowing the detection of kinship could have
been a crucial preadaptation which facilitated the emergence of
eusociality in Hymenoptera by preventing altruistic acts toward
non-related individuals. Our study revealed that an olfactory
subsystem that processes CHC information might be conserved
in ants (Formicidae) and hornets (Vespidae), two families in
which eusociality evolved separately. This olfactory subsystem
may therefore have been present in their last common ancestor, a
solitary predatory wasp (Johnson et al., 2013; Branstetter et al.,
2017; Peters et al., 2017). An interesting possibility is that this
ancestral CHC processing subsystem was initially involved in
prey recognition and was later co-opted for kinship recognition.
Indeed, some Crabronid wasps (Liris niger) recognize their prey
bymeans of CHCs through basiconic sensilla (Anton andGnatzy,

1998). Future work should now provide more examples of the
existence of this olfactory subsystem in different hymenopteran
families, aiming to understand its evolution. Similarly, it will be
important to follow the evolution of the 9-exon olfactory receptor
gene family, which is currently thought to be involved in the
detection of CHCs, although this has not been demonstrated
yet (Tsutsui, 2013; Engsontia et al., 2015; Zhou et al., 2015).
The emerging model is that 9-exon ORs are expressed in the
OSNs harbored by basiconic sensilla and that expansions of this
OR class in some hymenopteran lineages went hand in hand
with larger numbers of glomeruli within their CHC olfactory
subsystem (McKenzie et al., 2016). More generally, our working
hypothesis is that the CHC-processing subsystem is ancestral and
more widespread among Hymenoptera than initially thought.
We favor the idea that complex CHC recognition/discrimination
abilities, possibly involving the basiconic sensilla/TB subsystem,
may have been a “spring-loaded preadaptation” playing a central
role in the advent of eusociality (Kather and Martin, 2015).
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