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Abstract

Species diversity, and the various interactions that occur between species, supports eco-
systems functioning and benefit human societies. Monitoring the response of species
interactions to human alterations of the environment is thus crucial for preserving
ecosystems. Ecological networks are now the standard method for representing and
simultaneously analyzing all the interactions between species. However, deciphering
such networks requires considerable time and resources to observe and sample the
organisms, to identify them at the species level and to characterize their interactions.
Next-generation sequencing (NGS) techniques, combined with network learning and
modelling, can help alleviate these constraints. They are essential for observing cryptic
interactions involving microbial species, as well as short-term interactions such as those
between predator and prey. Here, we present three case studies, in which species
associations or interactions have been revealed with NGS. We then review several cur-
rently available statistical and machine-learning approaches that could be used for
reconstructing networks of direct interactions between species, based on the NGS
co-occurrence data. Future developments of these methods may allow us to discover
and monitor species interactions cost-effectively, under various environmental condi-
tions and within a replicated experimental design framework.

1. INTRODUCTION

1.1 Ecological Interactions Are Drivers of Ecosystem
Functioning

For a considerable part of the history of ecology, ecologists have tried to

observe and explain the relationships between biodiversity and ecosystem

functioning (BEF relationship) and how these change with environmental

conditions and human-derived stressors (see Bohan et al., 2013; Cardinale
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et al., 2012; chapter ‘Towards an integration of biodiversity-ecosystem

functioning and food-web theory to evaluate relationships betweenmultiple

ecosystem services’ by Hines et al.; chapter ‘Linking biodiversity, ecosystem

functioning and services, and ecological resilience: towards an integrative

framework for improved management’ by Truchy et al.; Raffaelli et al.,

2014). There is now a broad consensus that species diversity supports many

ecosystem functions (Bohan et al., 2013; Cardinale et al., 2012). Ecological

explanations of BEF have largely invoked two effects. First, a ‘sampling

effect’ where highly productive species are more likely to be present in a

diverse species pool and consequently function increases with diversity. Sec-

ond, a ‘complementarity effect’ where the link between diversity and func-

tion is explained as a difference in species resource requirements (Loreau and

Hector, 2001). Given that some species exploit resources more efficiently

than others, then across increasingly diverse pools of species, functionality

will tend to increase.

Species diversity not only supports ecosystem functions, but also influ-

ences the stability of ecosystems (Haddad et al., 2011; Loreau and de

Mazancourt, 2013; Tilman et al., 2006). For system-level properties, such

as total biomass/productivity and biological control, resilience of ecosystem

function can arise with both the sampling and complementarity effects. As

interacting species react in different ways to external stress, some species will

benefit while others will not (see May, 1973). Across a portfolio of species

within a diverse ecosystem, the stability of the entire portfolio will be greater

than the fluctuations in the function of each species, due to an effect of aver-

aging (Tilman et al., 1998). In high-diversity systems, stability across the

portfolio of species is therefore preserved in the face of variation (insurance

hypothesis, see Loreau et al., 2003; Yachi and Loreau, 1999).

These effects of biodiversity on ecosystem functioning are mediated by

the ecological interactions between species (Duffy et al., 2007; Thébault and

Loreau, 2006). For studying diverse systems of many interacting species,

ecological network approaches have become the standard method (Ings

et al., 2009; Lewinsohn et al., 2006; Pocock et al., 2012). These consider

species as nodes, and the interactions between species (e.g. predator–prey
interactions, host–parasite interactions, plant–pollinator interactions) as a

series of links. The links may be weighted (quantitative ecological network)

or not. Link weight is often defined the observed frequency of the interac-

tion or the effect of the interaction on the performance of the interacting

partners (Bascompte et al., 2006; Berlow et al., 2004; Laliberté and
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Tylianakis, 2010). Building upon the BEF knowledge already acquired, the

aim of network approaches is to understand how the network structure leads

to the ‘emergence’ of ecosystem functions (see chapter ‘Towards an integra-

tion of biodiversity-ecosystem functioning and food-web theory to evaluate

relationships between multiple ecosystem services’ by Hines et al.;

Thompson et al., 2012). It has long been known that the provision of a spe-

cific ecosystem function may be maximized through management of the

abundance of functionally important species (Gaston, 2010), such as polli-

nator honeybees (Calderone, 2012; Hagen et al., 2012). But what has

become clear from network approaches is that the resilience of ecosystems

and the stability of their functions rely directly on species diversity and the

interactions between all species within the network (Naeem et al., 2009).

One interesting development in recent years has been a growing appre-

ciation that ecological interactions and evolutionary dynamics can interact

(Hairston et al., 2005). The structure of ecological networks and evolution

can feedback, one upon the other. For instance, in plant–pollinator and
plant–seed disperser mutualistic networks, network structure depends on

co-evolution with and between partner species (Bascompte et al., 2006;

Nuismer et al., 2013). In trophic networks (food webs), link connectance

and the number of trophic levels can be affected through the evolution of

body–size relationships (Loeuille and Loreau, 2006) and adaptive foraging

(Beckerman et al., 2006). The evolutionary history can in turn affect net-

work modularity and nestedness (Robinson et al., 2015; Vacher et al.,

2008). These changes in ecological network structure, caused by the evolu-

tion of life-history traits, affect the functioning of ecosystems (Abrams and

Matsuda, 2005; Loeuille et al., 2002), as well as their long-term stability and

resilience (Kondoh, 2003; Loeuille, 2010a,b; Thébault and Fontaine, 2010).

1.2 Ecological Interactions Are Altered by Anthropogenic
Activity

Anthropogenically accelerated biodiversity loss and larger global-scale envi-

ronmental impacts have provoked much public concern and a drive to

improve our management of the planet (Cardinale et al., 2012; Raffaelli

and White, 2013; Rockstr€om et al., 2009). Starting at the Rio ‘Earth

Summit’ in 1992, this need to protect and monitor ecosystems and their

functions have more recently coalesced around the concept of ecosystem

services, as the ecosystem functions that directly benefits humanity

(Millennium Ecosystem Assessment, 2005; see also chapter ‘Detrital
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dynamics and cascading effects on supporting ecosystem services’ by Mulder

et al.). There is, however, little agreement on, or clear understanding of, the

best practices for preventing losses in species diversity, and of how networks

of interacting species may be restored (but see Pocock et al., 2012).What we

do have are expectations regarding how networks may change with envi-

ronmental stressors, such as agricultural intensification (Albrecht et al.,

2007; Laliberté and Tylianakis, 2010; Tylianakis et al., 2007) or biological

invasions (Aizen et al., 2008; Albrecht et al., 2014; Heleno et al., 2009;

Lopezaraiza-Mikel et al., 2007; Vacher et al., 2010). However, predicting

a priori exactly how a particular ecological network metric (e.g. species rich-

ness, number of links, interaction strength, connectance, modularity,

nestedness) will change in response to a particular stressor remains difficult

(Heleno et al., 2012). Defining ecologically relevant network metrics

(Blüthgen et al., 2008; Fortuna et al., 2010; Joppa et al., 2010; Leger

et al., 2015) and predicting how they affect network structural stability

and the persistence of the species within it (Bascompte et al., 2003;

Montoya et al., 2006; Rohr et al., 2014; Saavedra et al., 2011; Thébault

and Fontaine, 2010) is also very challenging.

Simply reducing or removing anthropogenic stressors may not be

enough to restore the structure of ecological networks and the functioning

of ecosystems. For example, in a recent grassland experiment, plant diversity

in plots that received high rates of nitrogen for 10 years had not recovered to

control levels 20 years after the nitrogen inputs had stopped (Isbell et al.,

2013). This suggests that ‘turning back the clock’ to a more benign set of

management practices, even where this is feasible, might not achieve resto-

ration goals. There is, indeed, increasing evidence that network structure

and dynamics modulates the trajectory and rate of change of the response

to stressors, with time lags and the presence of multiple alternative stable

states, due to ecological inertia in the food web. Alternative stable states have

been suggested as the reasons for the slow or non-existent biological recov-

ery of commercial marine fisheries following reductions in fishing effort, and

of freshwaters following acidification (Layer et al., 2010, 2011) and eutro-

phication (Scheffer et al., 2001).

1.3 Next-Generation Sequencing Can Be Used for Monitoring
Ecological Interactions

While ecological networks play a central role in the development of basic

and applied ecological science, most empirical networks remain at best
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incomplete due to persistent methodological shortcomings that hinder

our capacity to resolve species (i.e. network nodes) and their interactions

(i.e. network links) (Ings et al., 2009). Resolving ecological networks

require considerable (and often prohibitive) investments of time and

resources to observe and sample the organisms present within an ecosys-

tem, identify them to the species level and then characterize the possible

links that exist between those species. Quantifying the importance of

these links, in terms of frequency and effect on the performance of the

interacting partners, is even more difficult. This means that relatively

few well-resolved ecological networks have been constructed, there is

little replication amongst those networks (see Pocock et al., 2012), and

ultimately our understanding of network-based BEF and ecosystem

change is limited.

Here, we speculate that reconstructing ecological networks directly

from environmental DNA (eDNA), by combining next-generation

sequencing (NGS; high-throughput sequencing) (Di Bella et al., 2013)

and theoretical approaches, such as statistical modelling (Faust and Raes,

2012) and machine learning (Bohan et al., 2011), will alleviate these meth-

odological and financial constraints. Our arguments are the following:

(1) NGS platforms generate several millions of DNA sequences for a

few hundred dollars (Liu et al., 2012; Quail et al., 2012); (2) they permit

the characterization of DNA diversity in complex environmental samples

(e.g. soil, water, plant tissues, faeces, pellet, gut content, etc.) containing

hundreds of microbial species and the imprint of many macro-organisms;

(3) many of these organisms can be identified at the species level by using

GenBank or reference taxonomic databases such as Greengenes, BOLD,

SILVA and UNITE (Abarenkov et al., 2010; DeSantis et al., 2006;

Kõljalg et al., 2005; Quast et al., 2013; Ratnasingham and Hebert,

2007) and (4) methods are being developed to predict species interactions

from their abundance patterns and additional information such as their

functional traits or the features of the environmental samples (Bohan

et al., 2011; Deng et al., 2012; Faust and Raes, 2012; Kurtz et al.,

2015). With these advancements, the potential of NGS techniques for

resolving complex ecological networks is enormous. Below we review

the types of ecological interactions for which NGS data are the most

relevant, present some examples of NGS-based ecological networks and

give an insight into the theoretical approaches that may be applied to

NGS data to highlight ecological interactions.
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2. WHY LEARNING ECOLOGICAL NETWORKS FROM
NGS DATA?

2.1 Limitations of Classical Methods for Resolving
Ecological Interactions

Network ecology primarily emerged based on the observation of interac-

tions between macro-organisms (e.g. plant–pollinator, plant–herbivore,
plant–seed disperser, anemone–fish; see IWDB, https://www.nceas.ucsb.

edu/interactionweb/resources.html). These observations require consider-

able time and resources and have limitations. Smaller species, such as

microbes and parasites, have often been overlooked (Lafferty et al., 2008)

despite their importance for ecosystem functioning (Ducklow, 2008;

Gilbert and Neufeld, 2014; Hudson et al., 2006). As a consequence, integra-

tion of macro-organisms and micro-organisms resolved at the species level

into the same networks is far from the norm (but see Vacher et al., 2008,

2010). Short-term interactions such as those between predator and prey

are also difficult to observe. This lack of completeness and integration of

ecological networks critically limits our understanding of BEF and should

be resolved (Fontaine et al., 2011).

Micro-organisms have not been fully integrated in network ecology

largely due to the enormous difficulty associated with identifying the inter-

acting microbes. Microbial interactions have long been studied using lab-

oratory culture-dependent methods. However, testing the hundreds of

combinations of culture conditions necessary to find the conditions

required to grow successfully a single microbial species is often prohibitive

(Lok, 2015). As a consequence, an estimated 85–99% of bacteria and

archaea cannot yet be grown in the lab, drastically limiting our knowledge

of microbial life. Culturing is not only a (inadvertently) selective environ-

ment, but also a labour intensive and tedious task that cannot be extended

to the whole microbial community in a given environment. Co-culture

experiments are traditionally used to detect antagonistic or mutualistic

interactions between microbial taxa but the extrapolation of results to nat-

ural conditions is risky (Sher et al., 2011). High-throughput cultivation

platforms, such as microfluidic chips and iChips, are currently revolution-

izing this field of research. They are based on complex cultivation media,

closer to those of the natural environment and may support multiple

microbial species (Lok, 2015). Culturing and co-culturing microbes

7Learning Ecological Networks

ARTICLE IN PRESS

https://www.nceas.ucsb.edu/interactionweb/resources.html
https://www.nceas.ucsb.edu/interactionweb/resources.html
https://www.nceas.ucsb.edu/interactionweb/resources.html


nevertheless remain a complicated task (Haruta et al., 2009). Many scien-

tists have, therefore, chosen to bypass it entirely and move to sequencing

directly microbial DNA.

Many scientists studying trophic networks have also chosen to use

DNA sequencing for characterizing predator–prey or host–parasitoid
interactions. The visual and microscopic examination of guts, faeces, or

pellets (Hengeveld, 1980; Pisanu et al., 2011) and the rearing of parasitoids

from hosts (Eveleigh et al., 2007; Müller et al., 1999) are indeed time con-

suming, labour intensive and highly dependent on the observer’s experi-

ence. They tend to overlook cryptic species and are very difficult to

compare between systems or researchers (reviewed by Symondson,

2002). Direct methods have expanded recently to include the analysis of

ratios of naturally occurring stable isotopes (mostly carbon and nitrogen),

permitting the integration of trophic information over an extended time-

scale (several days to several months) (Boecklen et al., 2011). Nevertheless,

the technique can only be applied to a small number of prey species (Moore

and Semmens, 2008) and often does not permit obtaining accurate trophic

data at individual level (Vanderklift and Ponsard, 2003). Other biomarkers,

such as fatty acids (reviewed by Traugott et al., 2013) have similar

constraints.

2.2 Advantages of NGS for Identifying Species and Their
Interactions

The emergence of NGS techniques and associated bioinformatic pipelines

has boosted the characterization of species and their interactions over the last

10 years. In particular, it has boosted the characterization of microbial com-

munities (Di Bella et al., 2013; Hibbett et al., 2009) and facilitated the quan-

tification of trophic links (Smith et al., 2011; Staudacher et al., 2015). NGS

indeed overcomes the limitations of culture-dependent methods and pro-

vides a more thorough description of microbial communities. We are

now, in principle, able to detect any microbial organism in nature, even

those that cannot be isolated or grown in the lab. The first step is to collect

environmental samples (e.g. samples of soil or water, tissues of plant, animal,

etc.) and extract total DNA from these samples. The taxonomic description

of microbial communities with NGS techniques then relies on the amplifi-

cation and sequencing of DNA barcodes (Chakraborty et al., 2014). Simi-

larly, the sequencing of faeces, pellet, or gut content gives an insight into the

diet of an organism with little or no need for a priori information about the
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target prey species (e.g. Boyer et al., 2013; Brown et al., 2012; Quéméré

et al., 2013; Shehzad et al., 2012). Moreover, the use of tags (i.e. unique

identifiers) to recover data from each sample after sequencing (Clarke

et al., 2014; Taberlet et al., 2012) facilitates the mass screening of several

hundreds of individual samples (e.g. Kartzinel et al., 2015; Mollot

et al., 2014).

A DNA barcode, in its simplest definition, is one or small number of

short genetic sequences taken from a standardized portion of the genome

that are used to identify species (Schlaeppi and Bulgarelli, 2015). Different

barcode regions are used for different taxonomic groups. The most popular

DNA barcode for identifying fungal species is the internal transcribed spacer

(ITS) region of the nuclear ribosomal repeat unit (Schoch et al., 2012),

except for Glomeromycota ( €Opik et al., 2014; Stockinger et al., 2010).

The 16S small ribosomal subunit gene (16S rRNA) is the ‘gold standard’

for characterizing bacterial community composition (Sun et al., 2013),

although other barcode regions have been proposed (Chakraborty et al.,

2014). The 16S rRNA gene contains conserved regions as well as nine

hypervariable regions (V1–V9). One or more of these hypervariable regions

are usually sequenced (Gloor et al., 2010; Sun et al., 2013). Universal

barcode genes are also available for algae and protozoa, but, to our knowl-

edge, not for viruses (Chakraborty et al., 2014). The standardized barcode

region for eukaryotic animals is part of the cytochrome c oxidase 1 (CO1)

mitochondrial gene and a growing library of identified specimens exists (see

BOLD, http://www.boldsystems.org/; Ratnasingham and Hebert, 2007).

In the case of trophic ecology, the best barcode depends upon the model

organism, its likely preys, and the question being addressed (Pompanon

et al., 2012). Generally, as dietary samples are complex mixtures of highly

degraded DNA, the best barcode should target very short DNA fragments

with the same amplification efficiency across very distantly related taxa.

These constraints sometimes preclude species-level taxonomic assignment

of preys as the probability to encounter variable sites decreases with the

sequence length. Therefore, classical DNA-based methods such diagnostic

PCR followed by Sanger sequencing remains very useful for the quantitative

assessment of predator–prey (Clare et al., 2009; Rougerie et al., 2011) and

host–parasitoid interactions (Condon et al., 2014; Kaartinen et al., 2010;

Smith et al., 2008). These molecular-based techniques have been used suc-

cessfully to reveal previously unseen trophic interactions (Derocles et al.,

2015; Wirta et al., 2014).
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3. EXAMPLES OF NGS-BASED ECOLOGICAL NETWORKS
AND THEIR APPLICATIONS

3.1 Deciphering Pathobiomes Using NGS-Based Microbial
Networks for Improving Biological Control

Population growth and changes in dietary habits are likely to double human

demand for food in the coming decade. However, in addition to these issues,

there are inherent inefficiencies in modern agriculture where plant patho-

gens can claim 10–16% of the global food harvest. Reducing this percentage

has become, therefore, a priority for achieving food security (Chakraborty

and Newton, 2011). Biodiverse ecosystems can support natural antagonists

of pathogens and they have been argued to limit or prevent disease devel-

opment (Berendsen et al., 2012; Penton et al., 2014). The notion that the

pathogens live and interact with other organisms in their environment

has led to the development of the pathobiome concept (i.e. the pathogen

species integrated within its biotic environment; Vayssier-Taussat et al.,

2014). Elucidating the components of the pathobiome is one of the prereq-

uisites for understanding the persistence, transmission and evolution of path-

ogen species, and for improving methods of biological control with naturally

occurring antagonists.

Microbial networks give insight into the relationships between a patho-

gen species and the other micro-organisms interacting with the host species.

Their study may enable the identification of potential pathogen antagonists

and may reveal network topological properties driving the stability of the

residential microbial community, including its invasibility by pathogens

(Desprez-Loustau et al., 2015; Kemen, 2014). Microbial networks typically

represent the patterns of co-existence between microbial taxa, irrespective

of the underlyingmechanism.Nodes represent microbial taxa and links indi-

cate spatial or temporal associations between taxa. Such networks are

referred to as microbial co-occurrence networks (Aires et al., 2015;

Barberán et al., 2012; Kara et al., 2013; Navarrete et al., 2015), microbial

association networks (Chow et al., 2014; Faust and Raes, 2012;

Fuhrman, 2009), microbial correlation networks (Duran-Pinedo et al.,

2011; Friedman and Alm, 2012), or networks of co-existing microbes

(Chaffron et al., 2010). Direct ecological interactions may account for the

observed co-existence patterns. As with macroscopic organisms, microbes

interact with each other directly, through pairwise ecological interactions

such as competition, predation, parasitism, mutualism, commensalism, or
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amenalism (Faust and Raes, 2012). These interactions can involve micro-

organisms belonging to the same kingdom or different kingdoms (Frey-

Klett et al., 2011). Competition, which is considered to be the dominant

type of microbe–microbe interaction (Foster and Bell, 2012; Hibbing

et al., 2010), is expected to produce co-exclusions between microbial taxa.

Amensalism is also expected to produce co-exclusions while mutualism and

commensalism are expected to yield co-associations between microbial taxa.

The outcome of parasitism or predation, in terms of spatial or temporal asso-

ciation, is less straightforward to predict, with the consumer relying on, but

potentially depleting, its prey. Associations between microbial taxa may also

be explained by two other mechanisms: because they both depend on the

presence of a third microbial taxa (indirect ecological interaction) or because they

are adapted to similar environmental conditions (shared environmental prefer-

ence) (Ovaskainen et al., 2010).

Here, we reconstructed the microbial association network (Fig. 1) of the

leaves of an oak tree (Quercus robur L.) susceptible to the fungal pathogen

Erysiphe alphitoides, the causal agent of oak powdery mildew (Mougou

et al., 2008). Forty leaves were sampled and DNA was extracted from four

0.5 cm2 discs per leaf. Fungal taxa were characterized by 454

pyrosequencing of the ITS1 region (as described in Cordier et al., 2012).

Bacterial taxa were characterized by sequencing the hypervariable V6 region

of the 16S rRNA gene on an Illumina platform (as described in Gloor et al.,

2010). The taxonomic composition of the samples was obtained by filtering

and clustering the sequences using QIIME (Caporaso et al., 2010) and

Usearch (Edgar, 2013). The software SparCC (Friedman and Alm, 2012)

was then used to compute the correlations between the abundances of

microbial taxa across samples. Only significant positive correlations (co-

associations) and significant negative associations (co-exclusions) were

retained as links in the microbial network. The network was visualized using

Gephi (Bastian and Heymann, 2009). Its analysis revealed that E. alphitoides

has a particular connectivity behaviour, as it is predominantly connected to

the network through strong negative links. The presence of the pathogen is

thus associated to the absence of other micro-organisms. To go further into

the mechanistic interpretation of this network, the microbial association

network should be turned into a microbial interaction network having only

direct ecological interactions as links. This may be done by firstly using envi-

ronmental conditions to screen out associations that indicate a shared environ-

mental preference and, secondly, using network inference methods to predict

direct links between microbial taxa (Faust and Raes, 2012; Kurtz et al., 2015;
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Schwaller et al., 2015). Such network would allow us to identify the micro-

bial species that directly impede or facilitate pathogen development.

3.2 Studying the Hologenome Theory of Evolution Using
NGS-Based Microbial Networks

Humans are drastically and rapidly altering the environment, including cli-

mate, and many species may not be able of adapting quickly enough to these

new conditions (Carroll et al., 2014). The mismatch between the phenotype

of agriculturally important plants and new climate is an overarching

Figure 1 Microbial association network of the leaves of an oak tree (Q. robur L.) suscep-
tible to the foliar fungal pathogen E. alphitoides (Ea). Each node represents a microbial
taxon (either bacterial or fungal) and each link represents a significant correlation
between their abundances. Red (grey in the print version) and green (grey in the print
version) links indicate co-exclusions and co-associations, respectively. The arrow indi-
cates the node with the highest degree (i.e. the highest total number of links). Degree
decreases clockwise, with nodes stacked on the same line having the same degree. The
size of the nodes is inversely proportional to the sum of the correlation coefficients:
larger nodes have more number and/or stronger negative associations. Darker nodes
have higher betweenness centrality (calculated on the absolute values of associations),
suggesting that they are topological keystone taxa. E. alphitoides is predominantly con-
nected to the network through strong negative links (co-exclusions) but is not a good
candidate for topological keystone species.
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challenge in forestry, agriculture and conservation biology. A widespread

debate concerns whether to use local versus external sources of genetic

material for replanting to best anticipate responses to climate change

(Carroll et al., 2014). The hologenome theory of evolution is relevant to

this debate. It posits that the holobiont (the plant or animal with all of its

associated micro-organisms) is a unit of selection in evolution. According

to this theory, host and ‘associates’ genomes act as a consortium that copes

with environmental change by promoting adaptation and evolving as a

whole. During periods of rapid environmental change, a diverse microbial

symbiont community can aid the holobiont in surviving, multiplying and

‘buying the time’ necessary for the host genome to evolve (Zilber-

Rosenberg and Rosenberg, 2008). There is indeed empirical evidence that

host speciation is under the influence of its interactions with micro-

organisms ( Janson et al., 2008) and that microbial communities can be

one determinant shaping the adaptation and evolution of higher organisms

(Dittami et al., 2015; Rosenberg et al., 2007) .

NGS techniques are useful tools to characterize the tight associations of

eukaryotes with microbes. In a recent study, they were used to characterize

the internal microbial communities of the algae Caulerpa at the scale of the

Mediterranean Sea (Aires et al., 2015). These endophytic microbial commu-

nities are hypothesized to play important roles in development, defence and

metabolic activities of their host algae. Three Caulerpa species were sampled

and the bacterial lineages within each sampling unit were identified through

high-throughput sequencing of the hypervariable V4 region of the 16S

rRNA gene. Then, networks of co-occurring bacterial lineages were ana-

lyzed by combining percolation theory (Moalic et al., 2012; Stauffer and

Aharony, 1994) and community detection algorithms (Fortunato, 2010;

Lancichinetti and Fortunato, 2009; Leger et al., 2014). Here, the Bray–
Curtis index was used to assess the similarity in the distribution of bacterial

lineages across samples: two lineages are linked if their distribution similarity

is higher than 0.62, which is the percolation threshold of the network. Sec-

ond, modules were delimited by using the leading eigenvector algorithm

(Fig. 2). The results revealed that a very large fraction of the bacterial com-

munity is species-specific, even in areas where distinctCaulerpa species occur

in sympatry. These species-specific bacterial lineages account for the mod-

ular structure of the co-occurrence network. Such specificity of endophytic

bacterial communities is coherent with the hologenome theory of evolu-

tion. As several Caulerpa taxa have extended their range through invasion

in different parts of the world, including the Mediterranean Sea, future
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studies should investigate the role of these microbial communities on the

invasiveness of their host.

3.3 Testing the Niche Partitioning Theory with NGS-Based
Trophic Networks

The niche partitioning theory is central to our understanding of biodiversity.

The term niche partitioning refers to the process by which natural selection

drives competing species into different patterns of resource use or different

Figure 2 Associations between the endophytic bacterial lineages of the algae Caulerpa
at the scale of the Mediterranean Sea. Each node is a bacterial lineage. Two lineages are
linked if they tend to co-occur in the same samples. The Bray–Curtis index was used to
assess the similarity in their distribution across samples: two lineages are linked if their
distribution similarity is higher than 0.62, which is the percolation threshold of the net-
work. Nodes are coloured according to their belonging to a module. Modules were del-
imited by using the leading eigenvector algorithm. The modules form three larger
clusters that are, respectively, dominated by bacterial lineages specific of C. prolifera,
C. racemosa var. turbinata-uvifera, and C. racemosa var. cylindracea.
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niches (Hector and Hooper, 2002; MacArhur, 1958). This differentiation of

ecological niches reduces competition and promotes co-existence between

species (Chesson, 2000; Levine and HilleRisLambers, 2009). NGS tech-

niques promise to bring significant changes in our understanding of niche

partitioning because they provide information about the entire diet range

of a species, while also highlighting new and unexpected trophic links.

For instance, Ibanez et al. (2013) carried out a trait-based estimation of

the trophic niche width of four species of grasshoppers through choice

experiments and NGS study of their diet. They showed that observed tro-

phic niche breadth in generalist herbivorous insects depends on both

species-specific food preferences and habitat diversity, and that it is not an

intrinsic property of the species as usually considered in theoretical studies.

Kartzinel et al. (2015) also used NGS techniques, in combination with stable

isotope analyses, to investigate trophic niche partitioning among sympatric

large mammalian herbivores in Kenya. They observed unsuspected fine-

scale resource partitioning even between species within the same trophic

guild. Consequently, through this study, NGS methods illuminated mech-

anisms behind the large diversity of co-existing herbivorous mammal species

observed in African savannas.

Here, we used NGS techniques to resolve the trophic interactions in a

community of carabid beetles inhabiting European arable landscapes. These

beetles significantly contribute to the biological control of pests (Kromp,

1999) but their contribution is unpredictable given their broad diet spectrum

including alternative preys such as other natural pest enemies.We used NGS

approach in order to investigate changes in carabid diet among 14 common

arable species by analyzing the prey DNA contained in their guts. The cara-

bid beetles were sampled in six arable fields in two different agroecosystems

in Brittany, France. To cover the whole carabid diet spectrum, four barcode

genes were combined, including mitochondrial 16S and COI for character-

izing animal prey (Bienert et al., 2012; De Barba et al., 2014) and the chlo-

roplast trnL for detecting consumed plant species (Taberlet et al., 2007). We

obtained bipartite ecological networks showing an extensive degree of niche

overlapping between carabid species (Fig. 3), confirming their generalist

feeding behaviour. The use of NGS also allowed us for the first time to

quantify carabid community contribution to ecosystem services (the con-

sumption of several animal and plant pest species) and dis-services (the con-

sumption of other service-providing organisms) (Fig. 4). These findings

suggest that important ecological functions as pest regulation and intraguild

predationmay not be associated with the identity of particular species but are
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Figure 3 Quantitative predator–prey network recovered by analysing gut contents of
1414 carabid species using an NGS approach. Lower bars represent prey category
(arachnids, collembolans, insects, plants, and earthworms) abundance and upper bars
represent the abundance of carabid species positive for at least one prey category.
Scales are indicated at right. Linkage width indicates frequency of each trophic interac-
tion. Carabid beetles were sampled in six different fields.
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Figure 4 The relative proportions of five major prey categories (arachnids, collembo-
lans, insects, plants, and earthworms) recovered in gut contents of 503 individuals from
14 carabid species using NGSmeta-barcoding approach. Using their taxonomic identity,
all animal and plant preys were assigned into three functional categories (pest species,
detritivore species, and other natural predators). All preys that did not fit any functional
category (e.g. tree or non-pest plant DNA) were grouped into a forth category (miscel-
laneous). This approach allowed us to quantify the relative contribution of the carabid
community to ecosystem services (i.e. pest control) and dis-services (i.e. control of other
service-providing organisms) within agroecosystems.
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more likely an emergent property of the community probably modulated by

extrinsic environmental factors. Further investigations are required for see

how important agronomical features such as the cropping system ormanage-

ment intensity impact the structure of the trophic web.

3.4 Challenges to Be Addressed to Get Predictive Insights from
NGS-Based Networks

In the three-aforementioned examples, the NGS-based ecological networks

were static (Figs. 1–3). To predict the impact of environmental stressors on

ecosystem services, future research should move from static networks to

dynamic ones. In particular, it should explore whether time-varying net-

works have ‘early warning’ properties that can predict abrupt ecological

transitions or ‘tipping points’ (Dakos and Bascompte, 2014; Faust et al.,

2015). Metagenomic time series data can provide useful information on

the dynamics of microbial communities (Fuhrman et al., 2015). Future

research should also go beyond community composition by integrating data

about functional gene expression, transcripts, proteins and metabolites.

These data will yield crucial information, in addition to current

co-occurrence patterns, about ‘who?’ does ‘what?’ and ‘when?’ within

the community (Faust et al., 2015).

Future research should also aim at validating the ecological interactions

learned from NGS data. In the first example (Fig. 1), co-association and

co-exclusion patterns indicate which pairs of microbial taxa are the most

likely to interact together. But experimental validation of these interactions

is required. Reference networks, with well-known ecological interactions,

are necessary to assess the relevance of the methods of network reconstruc-

tion. For instance, a machine-learning methodology to reconstruct net-

works from co-occurrence data and species functional traits has been

demonstrated (Bohan et al., 2011). This produced hypothetical food webs

in an agricultural system that bore all the hallmarks of real food webs and

were validated against both the literature and direct molecular biological

data for specific trophic interactions (Davey et al., 2013). Other methods

have also been used successfully to reconstruct known ecological networks

based on species abundance data (Aderhold et al., 2012; Faisal et al., 2010;

Milns et al., 2010). The current challenge is to test all these methods on

occurrence or abundance data derived from NGS datasets, by using a

well-resolved empirical network as a reference.

Finally, future research must continue to improve the qualitative and

quantitative reliability of NGS data, while keeping the costs down. Future
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research must continue to evaluate and reduce the biases in species compo-

sition due to primers choice and amplification by PCR (Berry et al., 2011;

Gonzalez et al., 2012; Lee et al., 2012; Patin et al., 2013; Pinto and Raskin,

2012), to characterize the noise profiles of the various sequencing platforms

and to develop bioinformatic pipelines for taking them into account (Gaspar

and Thomas, 2013; Gilles et al., 2011; Reeder and Knight, 2011). Future

research must also develop new statistical methods for estimating species

richness and diversity from NGS data (Haegeman et al., 2013) and improve

the taxonomic assignment of the species. For instance, the combination of

several barcodes targeting restricted groups of organisms could improve the

taxonomic resolution of preys in dietary samples (e.g. Deagle et al., 2009).

However, combining of several barcode markers could increase consider-

ably the costs of NGS techniques. Multiplexing several barcodes within

the same PCR would help improving the cost effectiveness (De Barba

et al., 2014), but these still require time-consuming methodological devel-

opment. Additionally, the direct comparison of the relative proportion of

prey groups, by comparison of their barcode sequence counts, is highly

questionable due to the step of variation in amplification among barcodes

by PCR (Taberlet et al., 2012). The rapid development of direct shotgun

sequencing techniques, which requires no PCR amplification step, promises

to resolve these problems. In two recent studies, the shotgun sequencing of

long fragments of nuclear, mitochondrial and chloroplast DNA fragments

from an herbivorous mammal (Srivathsan et al., 2014) and a carnivorous

coleopteran (Paula et al., 2015) provided reliable and quantitative species-

level identification of their consumed preys. The shotgun sequencing simul-

taneously revealed detailed information about the host’s genetics, as well as

information about the diversity of host’s parasites and bacterial symbionts.

These findings open several exciting perspectives for merging multiple types

of ecological interactions in the same network (Fontaine et al., 2011; Kéfi

et al., 2012), or for assessing the impact of host genetic differentiation or spe-

ciation into ecological network dynamics (e.g. Robinson et al., 2015).

4. THEORETICAL METHODS FOR DECIPHERING
ECOLOGICAL NETWORKS FROM NGS DATA

4.1 The Input Data
Meta-barcoding, also referred to as amplicon-based community profiling,

generates a list of operational taxonomic units (OTUs) and their distribution

in the environmental samples. Each OTU is a group of related sequences
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(with a similarity percentage higher than 97%, in most cases) (Schlaeppi and

Bulgarelli, 2015). Taxonomic assignment of OTUs is usually performed by

comparing the most abundant sequence of each OTU to the sequences

deposited in GenBank or in curated databases such as Greengenes, BOLD,

SILVA or UNITE (Abarenkov et al., 2010; DeSantis et al., 2006; Kõljalg

et al., 2005; Quast et al., 2013; Ratnasingham and Hebert, 2007). The eco-

logical relevance of the number of sequences per OTU and per sample is a

matter of debate as the quantitative link between sequence reads and species

relative abundance is not always straightforward due to methodological

biases. The storage of environmental samples, before DNA extraction,

may cause biases in the community composition revealed byNGS technique

(U’Ren et al., 2014). In the case of gut samples, differences in digestion rates

between types of prey may also cause bias (Deagle et al., 2009). Finally,

whatever the type of environmental sample, variations in the amplification

efficiency of the barcode region among species may distort the community

composition (Berry et al., 2011; Gonzalez et al., 2012; Lee et al., 2012; Patin

et al., 2013; Pinto and Raskin, 2012). Studies of plant pathogen species have,

however, shown that pathogen abundances measured by visual symptoms

correlate with their relative abundance in NGS datasets (Sapkota et al.,

2015). The number of sequences of a given OTU in a given sample there-

fore contains some information on the OTU abundance in that sample,

despite potential biases introduced by PCR (Cotton et al., 2014). This is

important, because associations or interactions between OTUs are often

derived from sequence counts (Faust and Raes, 2012; Friedman and Alm,

2012; Kurtz et al., 2015).

The datasets required for reconstructing ecological networks from NGS

data are the OTU table, giving the estimated abundance of each OTU in

each sample, with or without some additional information on the OTUs

(e.g. functional traits of the corresponding species) and on the environmental

samples (e.g. host species, abiotic conditions at the time of sampling)

(Table 1). Association networks can be derived from the OTU table, as

shown in the two first examples (Figs. 1 and 2). In these examples, the nodes

of the association networks were fungal and/or bacterial OTUs. The links

were the significant correlations between their abundance across samples

(Fig. 1) or the similarity in their distribution across samples (Fig. 2). In

the first example, links were positive or negative depending on the correla-

tion sign. Such correlations should not be calculated based on raw sequence

counts because variations in the total number of sequences per sample (a

technical bias) may yield spurious results. Correlations between normalized
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counts may also yield spurious results and several methods have been pro-

posed to circumvent this issue (Deng et al., 2012; Faust and Raes, 2012;

Friedman and Alm, 2012; Kurtz et al., 2015).

Such networks representing spatial or temporal associations between micro-

bial OTUs are not entirely satisfactory because they do not match the mech-

anistic framework typically used in network ecology. As mentioned above,

network ecology developed mainly on the observation of direct ecological

interactions between several sets of macro-organisms (e.g. predator–prey,
plant–pollinator, plant–herbivore, plant–seed disperser, anemone–fish inter-
actions) (Ings et al., 2009). The predator–prey network recovered by using

NGS techniques to describe gut contents (Fig. 3) is similar in terms of inter-

action type, but not the microbial association networks of the two first

examples (Figs. 1 and 2). To go beyond these association networks, the first

challenge is to distinguish associations due to direct ecological interactions and

those due to indirect ecological interactions (Kurtz et al., 2015; Schwaller

et al., 2015). The second challenge is to take into account environmental

Table 1 Description of the Data Entering in the Construction of NGS-Based Ecological
Networks, with Their Names in the Two Main Fields of Research (Statistical Inference of
Networks and Logic-Based Machine-Learning Algorithms)

Data Description
Type
of Data

Name Given
in Statistical
Modelling

Name Given in Logic-
Based Machine Learning

Measured occurrence

or abundance of

species/OTUs in the

studied sites/samples

Input Observed

variables

Observable predicates

Additional information

on the species/OTUs

(e.g. functional traits) or

on the sites/samples (e.g.

abiotic environment)

Input Covariates Background knowledge

Rules of interaction (e.g.

species/OTU X can eat

Y if X is bigger than Y)

Input

or

output

Constraints on

the space of

possible networks

to explore

Logical rules which can be

part of background

knowledge or can be

learned from input data

Hypothetical relationships

between species/OTUs

that can be visualized as a

network

Output Inferred edges Abduced links
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variables into network models (Faust and Raes, 2012) in order to remove

associations due to shared environmental preference (Ovaskainen et al., 2010).

The third challenge is to integrate ecological knowledge on OTUs, in

the form of ‘rules of interaction’. This integration may improve the reliabil-

ity of the network, as shown previously for macro-organisms (Bohan et al.,

2011), and limits the space of possible networks that has to be explored.

Belowwe review the methods that can be used for addressing these chal-

lenges. These methods can be classified into two categories: statistical infer-

ence of networks and logic-based machine-learning algorithms. Both

categories use similar input data and aim at constructing plausible and test-

able networks, which explain the observed data the best. However, they

constitute different fields of research and therefore use a different vocabu-

lary. The main terms are summarized in Table 1.

4.2 Inferring Ecological Interactions Using Statistical Models
Statistical models of graphs (Lauritzen, 1996; Whittaker, 1990) are a natural

approach to depict the intricate interactions and relationships between spe-

cies (or OTUs). They have proved to be a valuable framework for modelling

direct relationships between species (or OTUs), based on conditional depen-

dencies in occurrence and abundance data (Table 1). Here, we describe two

popular approaches that might have value for reconstructing networks from

NGS data.

4.2.1 Bayesian Networks and Dynamic Bayesian Networks
Bayesian Networks (BNs, Jensen and Nielsen, 2007) and their temporally

explicit extension Dynamic Bayesian Networks (DBNs) framework

(Dean and Kanazawa, 1989) have been used to reconstruct interactions

from occurrence or abundance data. In ecology, BNs have been used to

model species interactions and species–habitat relationships (Aderhold

et al., 2012; Milns et al., 2010), while DBNs have been used to infer

microbial networks from time series (Faust et al., 2015). The structure of

BNs and DBNs can be derived from occurrence or abundance data, and

possibly covariates representing environmental conditions, by using score-

and-search techniques (Daly et al., 2011; Friedman et al., 1998). A score

function (e.g. the Bayesian Information Criterion) is used to measure the

fit between the observed data and an inferred network. Rules of iteration

then move from one possible network structure to another in the space

of possible network structures to evaluate fit. The aim is to find a network

that maximizes the fit. Exact optimization of the score is out of reach because
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of the high number of possible network structures. Various heuristics have

been proposed to improve the search and its efficiency, including the ‘greedy

search’ where only local improvements of the network structure are

explored.

4.2.2 Gaussian Graphical Models with Sparse Regularization
Coupling Gaussian graphical models (GGM) with sparse regularization has

become a popular method of inference in the last decade, because it allows us

to deal with large networks involving thousands of nodes by setting many of

the links to be zero. In the standard Gaussian setting, when the data are nor-

mally distributed, the approach assumes that the joint distribution of all

OTUs follows a multivariate Gaussian distribution. The associated covari-

ance matrix entirely describes the dependency structure between the OTUs.

The precision matrix, which is formed as the inverse of the covariance

matrix, is then a direct proxy for the expected network structure as the

matrix entries are proportional to the partial covariances between the

OTU abundances. Therefore, learning the graphical structure of conditional

dependencies can be reduced to a problem of variable selection to optimize

fit. This task can be efficiently performed by means of sparse regularization

such as the Lasso (Tibshirani, 2011). Various lasso algorithms have been

developed, including the ‘neighbourhood selection’ (Meinshausen and

Bühlmann, 2006) and the ‘Graphical Lasso’ (Friedman et al., 2008). Some

implementations can deal with millions of nodes.

To overcome the Gaussian assumption and comply with sequence count

data like those obtained with NGS techniques, research is being done to

broaden the applicability of GGM. Two lines of research have emerged

on this topic. The first is to transform the original data into a ‘Gaussian’ set-

ting, via simple transformations in order to use the well-understood GGM

with sparse regularization framework (Liu et al., 2009). The second, which

we do not discuss here, relies on the use of statistical models tailored to count

data (Yang et al., 2013). The technique of data transformation has been suc-

cessfully applied to ecological network inference (Kurtz et al., 2015), using a

general workflow, as follows: (i) the OTU count data are preprocessed and

normalized to meet the Gaussian assumption; (ii) a standard sparse GGM

inference method (either ‘neighbourhood selection’ or ‘graphical-Lasso’)

is used to select networks, describing direct links between OTUs; and,

(iii) step (ii) is iterated several times on many random subsamples of the orig-

inal data. The final network only retains the most stable edges, which appear

robust because they are selected in most of the subsamples. This three-step
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strategy—normalization plus inference plus stabilization—has also been suc-

cessfully used on other types of genomic data (Marbach et al., 2012).

An advantage of the GGM framework is that it is well suited to theoret-

ical analysis, which provides insights into the ‘data’ situations where the

methods may either be useful or not. Most strikingly, an analysis of network

selection consistency by Ravikumar et al. (2011) suggested that it should be

possible to infer network structure when a network has many nodes and the

sample size remains moderate, under the provision that there are no nodes in

the network with very high connectance. Such statistical results are practi-

cally important because they give some confidence that networks may be

inferred from NGS-based data where the number of samples is typically

much smaller than the number of OTUs.

4.3 Learning Ecological Interactions Using Logic-Based
Machine-Learning Algorithms

Like statistical models of graphs, the purpose of logic-based machine-

learning algorithms is to construct plausible and testable networks, which

best explain the observed data. The possibility of easily integrating the exis-

ting background knowledge into the learning process, e.g. in the form of

‘rules of interaction’, is a key advantage of logic-based machine-learning

algorithms over statistical models (Table 1). Logic-based machine-learning

algorithms have already been used successfully to automatically generate tro-

phic networks directly from species occurrence data combined with back-

ground knowledge, including information about the species body size and

functional groups (Bohan et al., 2011; Tamaddoni-Nezhad et al., 2013).

They have also been applied successfully to other problems in ecology, in

particular to model population dynamics (e.g. modelling phytoplankton

growth for the Danish Lake Glumsø; Todorovski et al., 1998), and their rel-
evance has also been demonstrated in many challenging domains in compu-

tational biology including predictive toxicology (e.g. King et al., 1996),

pharmacophore design (e.g. Srinivasan et al., 2006) and protein structure

prediction (e.g. Cootes et al., 2003).

Below, we describe two types of logic-based machine-learning algo-

rithms that may be used to learn ecological networks from NGS data. Both

types are capable of learning networks from species (or OTU) occurrence or

abundance data. The first type, called inductive logic programming (ILP;

Muggleton, 1991), is capable of using background knowledge, such as

the existing knowledge about the species and their environment to hypoth-

esize (learn) interactions (Table 1). In the case where background
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knowledge may be incomplete or a subject of the learning itself, a new

approach called meta-interpretive learning (MIL; Muggleton et al., 2014)

may be used. To our knowledge, neither of these approaches have yet been

used to learn ecological networks from NGS data, but the first approach has

been used for classical ecological association data (co-occurrences in spatially

replicated field sampling) to learn predator–prey networks (Bohan et al.,

2011; Tamaddoni-Nezhad et al., 2013). Ecological interactions recovered

from the high-throughput sequencing of predator gut contents (e.g.

Fig. 3) or predicted by functional traits (e.g. body size or gape width),

may be included as background knowledge, or may be used to validate

the machine-learnt network. The second approach is likely to be more

appropriate to the learning of microbial networks (e.g. Figs. 1 and 2) where

background knowledge on microbial OTUs is often scarce.

4.3.1 Inductive Logic Programming
ILP systems (Muggleton, 1991) use a given set of positive and negative

examples E¼{E+[E�}, i.e., E is the union of positive and negative exam-

ples, background knowledge B to construct a hypothesis, H, that explains

E+ relative to B such that the extended theory is self-consistent, i.e.

B[H logically implies E+ and B[H[E� is logically consistent. The com-

ponents E, B andH are each represented as logic programmes. In the case of

machine learning of trophic networks, ILP systems can be used to learn gro-

und hypotheses H in the form of trophic relations between species

(or OTUs). Background knowledge includes logical rules, such as R�B

(i.e. R is a subset of B), to describe the species occurrence or abundance

(observable predicates) in terms of the trophic interactions (abducible pred-

icates) (Table 1).

This approach was used to learn a trophic network from an extensive

Vortis suction sampling of invertebrates in 257 arable fields across the UK

(Bohan et al., 2011). These fields were part of the farm scale evaluations

(FSE) of genetically modified, herbicide-tolerant (GMHT) crops. The

change in invertebrates abundance data with the GMHT treatment was reg-

arded as the primary observational data for the learning: observable predi-

cates were represented by abundance(X, S, up) (or abundance(X, S, down))

expressing the fact that the GMHT treatment increased or decreased the

abundance of species X at site S. The aim was to learn abducible predicates

eats(X, Y), capturing the hypothesis that species X eats species Y. Additional

information on the species were used to constrain the search for abducible

predicate eats(X, Y), by assuming that X should be a predator and bigger
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than Y. Predicates predator(X) and bigger_than(X, Y) were provided as part of

the background knowledge. This information was integrated within a log-

ical rule describing the observable predicates (abundance) in terms of the

abducible predicates (eats):

abundance(X, S, Dir) if predator(X), bigger_than(X, Y), eats(X, Y),

abundance(Y, S, Dir) where Dir can be either up or down. This rule

expresses the inference that following a perturbation in the ecosystem

(i.e. the introduction of GMHT crops), the increased (or decreased) abun-

dance of species X at site S can be explained by X eating species Y, which is

lower in the food chain, and by changes in the abundance of species Y.

Given this model and the observable data, the Abductive ILP system Progol

5.0 was used to generate a set of ground hypotheses (i.e. hypothetical trophic

links) which was visualized as a trophic network (Bohan et al., 2011). The

initial study was then extended by learning the trophic network from a larger

dataset (Tamaddoni-Nezhad et al., 2013). In both cases, a probabilistic ILP

approach, called Hypothesis Frequency Estimation (HFE, Tamaddoni-

nezhad et al., 2012), was used for estimating probabilities of hypothetical

trophic links. These probabilities were represented as the thickness of tro-

phic links in Bohan et al. (2011) and Tamaddoni-Nezhad et al. (2013). Ecol-

ogists who examined the first machine-learned food web (Bohan et al.,

2011) found that many of the learnt trophic links were corroborated by

the literature. In particular, links ascribed with high probability by machine

learning were shown to correspond well with those having multiple refer-

ences in the literature. Novel, high probability links were also suggested, and

some of these have recently been tested and confirmed by subsequent empir-

ical studies. For example, in the hypothesized food webs, some species of

spiders always appeared as prey for other predators; a result that was unex-

pected because spiders are obligate predators. This hypothesis was tested

using molecular analysis of predator guts and it was found that in this system

spiders do appear to play an important role as prey (Davey et al., 2013). This

finding was reconfirmed in Section 3.3 and Fig. 3. Thus, even though some

of the hypothesized links were unexpected, these were in fact confirmed

later and this provided an extremely stringent test for the machine-learning

approach.

4.3.2 Meta-Interpretive Learning
In themachine-learning settings described in the previous section, the search

for trophic links was constrained by additional information on the species
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(e.g. body size, trophic behaviour) which were provided as part of back-

ground knowledge. The logical rule stated thatXmay eat Y ifX is a predator

bigger than Y. However, for most communities and ecosystems, including

microbial communities, this kind of background knowledge may not be

available or it may be incomplete. MIL (Muggleton et al., 2014) is a

new machine-learning approach capable of predicate invention and recur-

sive rule learning. This new approach can be used for learning both the

interactions between species (or OTUs) and the ‘rules of interaction’

directly from species occurrence or abundance data. In this case, back-

ground knowledge does not include any specific knowledge on the species

but includes higher-order meta-rules, M�B, which are activated during

the proving of examples in order to generate hypotheses, H. A recent study

showed that MIL can be used to re-construct a simplified food web and

learn interaction rules directly from data (Tamaddoni-Nezhad et al.,

2015). We believe that this new learning setting will be useful for learning

ecological networks from NGS data whenever the interaction rules are not

known before hand.

5. CONCLUSION

Most interactions between species are difficult to observe, and as a

consequence the ecological networks that we typically reconstruct and ana-

lyze to understand ecosystem function are incomplete. Through the exam-

ples given in this review, we have argued that NGS techniques permit the

characterization of biodiversity in complex environmental samples (e.g. soil,

water, plant tissues, faeces, pellet, gut content, etc.) containing hundreds of

microbial OTUs and multiple macro-organism species. In the lists of

co-occurring species and OTUs that we can discern with NGS techniques,

there are the ‘ghosts of interactions past’ from which we could learn robust

and more complete ecological networks, at any specified taxonomic resolu-

tion and for organisms from all the Kingdoms of life. In this review, we have

then showed that various statistical and machine-learning approaches are

available for performing such network reconstruction, but the majority have

yet to be applied to NGS data. We believe that the combination of these

theoretical approaches with cost-effective NGS techniques will allow us

to study species interactions under all environmental conditions at high rep-

lication. However, three outstanding challenges remain to be overcome to

achieve these aims. These are to:
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• improve the qualitative and quantitative reliability of NGS data, while

keeping the costs down;

• use well-characterized networks of ecological interactions, in order to

test the validity of the various methods of network learning and

reconstruction;

• develop theoretical approaches to enable the learning of temporally

dynamic ecological networks.

Should these three challenges be met, then we foresee a step change in our

ability to measure, understand and monitor the world’s ecosystems and the

functions and services they provide.
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GLOSSARY
Barcode A short genetic sequence taken from a standardized portion of the genome that is

used to identify species.

Biodiversity The variety of life, including variation among genes, species, and functional

traits. It is often measured as: richness is a measure of the number of unique life forms;

evenness is a measure of the equitability among life forms; and heterogeneity is the dis-

similarity among life forms (Cardinale et al., 2012).

Conditional dependency The relationship between two variables conditioned on all other

variables. In a Gaussian setting, conditional dependency is measured by partial

correlation.

Diagnostic PCR A PCR assay which is used to test samples for the presence of DNA

from a specific species or a group of organisms.

Ecosystem functions (or functioning) Ecological processes that control the fluxes of

energy, nutrients, and organic matter through an environment. Primary production,
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for instance, is an ecosystem function. It is the process by which plants use sunlight to

convert inorganic matter into new biological tissue (Cardinale et al., 2012).

Environmental DNA (eDNA) Genetic material obtained directly from environmental

samples (soil, sediment, water, etc.).

Graph A mathematical object where entities (represented by vertices) are connected with

links (called edges). In graphical models, graphs are used to depict the structure of con-

ditional dependencies between variables.

Holobiont The functional entity composed by a macro-species and its associated symbiotic

microbes.

Logic-basedmachine learning A form of machine learning which uses logic-based infer-

ence and representation. For example, in inductive logic programming (ILP), the train-

ing examples, background knowledge, and the learned hypotheses are all represented as

logic programmes.

Meta-barcoding (amplicon-based community profiling) A method of biodiversity

assessment combining DNA-based identification and high-throughput sequencing. It

uses universal PCR primers to mass-amplify genetic markers from mass collections of

organisms or from environmental samples.

Next-generation sequencing (high-throughput sequencing) Technologies that para-

llelize the sequencing process, producing thousands, or millions of sequences

concurrently.

Niche partitioning theory refers to evolutionary and ecological processes leading to dif-

ferential resource exploitation between species in response to interspecific competition.

Operational taxonomic units (OTUs) are usually defined as clusters of similar barcode

sequences (16S rDNA, ITS etc.), frequently intended to represent some degree of tax-

onomic relatedness.

OTU table Matrix giving the number of sequences per OTU and per sample.

Pathobiome The pathogenic agent plus the members of its biotic environment.

Sanger sequencing (chain-terminationmethod) Method of DNA sequencing based on

the selective incorporation of chain-terminating dideoxynucleotides by DNA polymer-

ase during in vitro DNA replication. Developed by Frederick Sanger and colleagues in

1977, it was the most widely used sequencing method for approximately 25 years. It

can be used for fairly short strands of 100–1000 bp.
Shotgun sequencing Method used for sequencing long DNA strands that was one of the

precursor technologies for full genome sequencing. DNA is fragmented into numerous

small fragments that are sequenced using the chain termination method to obtain reads.

Multiple overlapping reads for the target DNA are obtained and computer programmes

then use the overlapping ends of different reads to assemble them into a continuous

sequence.

Sparse regularization Technique from constrained optimization used to force some

entries to zero in a vector of parameters. When applied to network inference, it allows

to deal with thousands of nodes, by coercing many of the edges to zero.

Statistical inference The process of drawing conclusions on a population based on data.

Tag A unique DNA sequence ligated to fragments within a sequencing library for down-

stream sorting and identification. Tags are typically a component of adapters or PCR

primers and are between 8 and 12 bp. Libraries with unique tags can be pooled together

and sequenced in the same sequencing run (¼multiplexing). Reads are later identified

and sorted via bioinformatic pipelines.
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Todorovski, L., Džeroski, S., Kompare, B., 1998. Modelling and prediction of phytoplank-
ton growth with equation discovery. Ecol. Modell. 113, 71–81.

Traugott, M., Kamenova, S., Ruess, L., 2013. Empirically characterising trophic networks:
what emerging DNA-based methods, stable isotope and fatty acid analyses can offer.
Adv. Ecol. Res. 49, 177–224.

Tylianakis, J.M., Tscharntke, T., Lewis, O.T., 2007. Habitat modification alters the structure
of tropical host–parasitoid food webs. Nature 445, 202–205.

U’Ren, J.M., Riddle, J.M., Monacell, J.T., Carbone, I., Miadlikowska, J., Arnold, A.E.,
2014. Tissue storage and primer selection influence pyrosequencing-based inferences
of diversity and community composition of endolichenic and endophytic fungi. Mol.
Ecol. Resour. 14, 1032–1048.

Vacher, C., Daudin, J.-J., Piou, D., Desprez-Loustau, M.-L., 2010. Ecological integration of
alien species into a tree-parasitic fungus network. Biol. Invasions 12, 3249–3259.

Vacher, C., Piou, D., Desprez-Loustau, M.-L., 2008. Architecture of an antagonistic tree/
fungus network: the asymmetric influence of past evolutionary history. PLoS One
3, e1740.

Vanderklift, M.A., Ponsard, S., 2003. Sources of variation in consumer-diet? 15N enrich-
ment: a meta-analysis. Oecologia 136, 169–182.

Vayssier-Taussat, M., Albina, E., Citti, C., Cosson, J.-F., Jacques, M.-A., Lebrun, M.-H., Le
Loir, Y., Ogliastro, M., Petit, M.-A., Roumagnac, P., Candresse, T., 2014. Shifting the
paradigm from pathogens to pathobiome: new concepts in the light of meta-omics.
Front. Cell. Infect. Microbiol. 4, 29.

Whittaker, J., 1990. Graphical Models in Applied Multivariate Statistics. Wiley Publishing,
New York.

Wirta, H., Hebert, P.D.N., Kaartinen, R., Prosser, S., Várkonyi, G., Roslin, T., 2014.
Complementary molecular information changes our perception of food web structure.
Proc. Natl. Acad. Sci. 111, 1885–1890.

Yachi, S., Loreau, M., 1999. Biodiversity and ecosystem productivity in a fluctuating envi-
ronment: the insurance hypothesis. Proc. Natl. Acad. Sci. 96, 1463–1468.

Yang, E., Ravikumar, P., Allen, G.I., Liu, Z., 2013. On Poisson graphical models. Adv.
Neural Inform. Process. Syst. 26, 1718–1726.

Zilber-Rosenberg, I., Rosenberg, E., 2008. Role of microorganisms in the evolution of
animals and plants: the hologenome theory of evolution. FEMS Microbiol. Rev.
32, 723–735.

39Learning Ecological Networks

ARTICLE IN PRESS

http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0915
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0915
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0920
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0920
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0925
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0925
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0930
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0930
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0935
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0935
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0940
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0940
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0940
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0945
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0945
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0950
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0950
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0950
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0950
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0955
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0955
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0960
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0960
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0960
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0965
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0965
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0970
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0970
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0970
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0970
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0975
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0975
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0980
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0980
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0980
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0985
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0985
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0990
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0990
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0995
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0995
http://refhub.elsevier.com/S0065-2504(15)00033-1/rf0995

	Learning Ecological Networks from Next-Generation Sequencing Data
	Introduction
	Ecological Interactions Are Drivers of Ecosystem Functioning
	Ecological Interactions Are Altered by Anthropogenic Activity
	Next-Generation Sequencing Can Be Used for Monitoring Ecological Interactions

	Why Learning Ecological Networks from NGS Data?
	Limitations of Classical Methods for Resolving Ecological Interactions
	Advantages of NGS for Identifying Species and Their Interactions

	Examples of NGS-Based Ecological Networks and Their Applications
	Deciphering Pathobiomes Using NGS-Based Microbial Networks for Improving Biological Control
	Studying the Hologenome Theory of Evolution Using NGS-Based Microbial Networks
	Testing the Niche Partitioning Theory with NGS-Based Trophic Networks
	Challenges to Be Addressed to Get Predictive Insights from NGS-Based Networks

	Theoretical Methods for Deciphering Ecological Networks from NGS Data
	The Input Data
	Inferring Ecological Interactions Using Statistical Models
	Bayesian Networks and Dynamic Bayesian Networks
	Gaussian Graphical Models with Sparse Regularization

	Learning Ecological Interactions Using Logic-Based Machine-Learning Algorithms
	Inductive Logic Programming
	Meta-Interpretive Learning


	Conclusion
	Acknowledgements
	Glossary

	References




