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REVIEW

Modes of action for biological control of Botrytis cinerea by 
antagonistic bacteria
Rana HaIDaR1,2, MaRc FERMaUD1, caRlos calVo-GaRRIDo1, JEan RoUDET1 and alaIn DEscHaMPs1

1 SAVE, Bordeaux Science Agro, INRA, 33882, Villenave d’Ornon, France
2 Tichreen University, Faculty of Science, Biology Department, PO Box 2231, Latakia, Syrian Arab Republic

Summary. The role of beneficial bacteria in biocontrol of plant diseases, particularly those caused by the necro-
trophic fungus Botrytis cinerea, has been investigated by testing many bacteria under laboratory and field condi-
tions. Bacteria may protect plants against B. cinerea by direct antagonistic interactions between biocontrol agents 
and this pathogen, as well as indirect effects through the induction of host resistance. This review focuses on vari-
ous bacteria that act as biological control agents (BCAs) of B. cinerea and their associated mechanisms. The modes 
of action (MoAs) include: i) synthesis of anti-fungal metabolites, such as antibiotics, cell wall-degrading enzymes 
and volatile organic compounds (VOCs); ii) competition for nutrients and/or a niche; and iii) induction of host re-
sistance. The challenge for development of BCAs is to reduce the variability of efficiency and to prove persistence 
under a large range of conditions. We discuss the advantages and drawbacks of MoA for future applications of 
bacteria in the field and in post-harvest storage, as well as combination of different MoAs as a strategy to achieve 
a more regular efficacy.

Key words: biocontrol, grey mold, antibiosis, competition, induced systemic resistance.

Introduction
Botrytis cinerea is a major necrotrophic fungal 

pathogen causing grey mold, a serious disease af-
fecting a large number of economically important 
agricultural and horticultural crops. This pathogen 
leads to considerable yield and quality losses in 
field production and postharvest storage worldwide 
(Jarvis, 1977; Williamson et al., 2007; Sharma et al., 
2009). In spite of the availability of various anti-
Botrytis fungicides, their use in pre- and/or post-
harvest conditions is not considered as sustainable 
because of their potential adverse effects on human 
and environmental health (Komárek et al., 2010) and 
the appearance of resistant strains (Leroux, 2004; 
Walker et al., 2013; Hahn, 2014; Romanazzi and Fe-
liziani, 2014). Because of its high genetic variability, 

short life cycle, and prolific reproduction, B. cinerea 
is considered a high-risk pathogen for the develop-
ment of fungicide resistance (Brent and Hollomon, 
1998; Leroux et al., 2002). This resistance has been 
detected in many countries and on numerous crops 
(Leroux, 2004; Zhao et al., 2010; Walker et al., 2013; 
Hahn, 2014). Development of complementary and 
alternative methods to chemical control, such as the 
use of non-pathogenic microorganisms (or their se-
cretions) as biological control agents (BCAs), before 
and/or after harvest, is increasingly considered as a 
promising and attractive alternative.

In recent decades, there has been continued and 
rigorous research worldwide with a greater impetus 
to explore a wide range of bacteria possessing an-
tagonistic properties against B. cinerea (Elmer and 
Reglinski, 2006; Compant et al., 2013). However, in 
the majority of these studies, the efficacy of the BCAs 
was evaluated under controlled conditions, and the 
fact that most of them fail in the field is now widely 
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known. Despite the large number of scientific papers 
published on this topic, the number of efficient bac-
teria commercialized for use as microbial fungicides 
against B. cinerea in the pre- and/or postharvest stag-
es remains limited (Nicot et al., 2011; Romanazzi et 
al., 2016) (Table 1).

Specific attention is given to the mechanisms by 
which beneficial bacteria antagoniz plant pathogen 
activity. It is important to know the precise mode(s) 
of action (MoAs) of a BCA to develop and implement 
an adapted control strategy in the field. Therefore, 
understanding the MoAs may help to improve the 
regularity of biocontrol efficiency by using the BCA 
in an active form and with the appropriate inoculum 
quantity. This knowledge should help to devise suc-
cessful and reproducible biological control methods 
under pre- and/or post-harvest conditions. Further-
more, the MoA may be among the key parameters 
for product development, and may also be relevant 
for marketing purposes (Köhl et al., 2011). 

Interest in different MoAs exhibited by bacte-
rial BCAs against B. cinerea has increased in the last 
decades. Early studies conducted by Blakeman and 
co-workers have reported the important role of the 
competition for nutriments by bacteria in the inhi-
bition of the conidial germination of B. cinerea (Szte-
jnberg and Blakeman, 1973; Brodie and Blakeman, 
1975). In a recent review about the biological control 
of grapevine pathogens (Compant et al., 2103), the 
authors indicated only a few examples of beneficial 

bacterial strains for control of grey mold with their 
potential MoAs. Recently, several reviews have 
presented data on the use of plant growth promot-
ing rhizobacteria (PGPR) as soil inoculants for the 
biocontrol of plant diseases. Some of these studies 
have taken account of the mechanisms of the bio-
control bacteria against a wide range of pathogens 
(Bloemberg and Lugtenberg, 2001; Labuschagne et 
al., 2010; Karunaratne, 2011; Pan and Bhagat, 2011; 
Bhattacharyya and Jha, 2012; Glick, 2012; Gupta et 
al., 2015). These reviews addressed the biological 
control of B. cinerea and also included other plant 
pathogens.

To our knowledge, there have been two reviews 
dealing with the mechanisms involved in the bio-
logical suppression of B. cinerea (Elad, 1996; Elad and 
Stewart, 2004). The authors discussed the involve-
ment of different MoAs in the biological suppression 
of B. cinerea, not only by bacteria but also using other 
microorganisms. In the present, we have restricted 
the scope to the different MoAs of bacterial antago-
nists against B. cinerea because of the huge breadth of 
the subject matter dealing with this important plant 
pathogen. We give a special emphasis to the differ-
ent mechanisms by which beneficial bacteria might 
inhibit B. cinerea. We report various examples of bac-
teria that exert direct and/or indirect effects on the 
pathogen in a wide range of crop pathosystems. The 
diversity and function of the inhibiting bacteria cited 
in the literature were examined, which is helpful for 

Table 1. Commercially available biopesticides based on bacteria, for control of gray mold on different crops.

®Trade name Bacterial strain Company (and/or country)

Pantovital® Pantoea agglomerans IRTA (Spain)

Serenade Max® Bacillus subtilis Bayer, formerly BASF (Germany)

Bio-save® Pseudomonas syringae Jet harvest solutions (USA)

Amylo-X® Bacillus amyloliquefaciens Biogard CBC (Italy)

Double Nickel 55WDG/LCTM Bacillus amyloliquefaciens Certis (USA)

Companion® Bacillus subtilis GB03 Growth products (USA)

Botokira Wettable Powder® Bacillus subtilis IK-1080 (Idemitsu Kosan Inc., Japan)

Bio Arc® Bacillus megaterium Sphere Bio-Arc PVTLtd (India)

Mycostop® Streptomyces griseoviridis Strain K61 Verdera Oy (Finland)

Actinovate® Streptomyces lydicus WYEC 108 Novozymes (Denmark)
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future research aiming to develop new bacterial bio-
control agents against B. cinerea.

Competition for space and nutrients 
Competition occurs when biocontrol agents and 

pathogens require the same resources (Campbell, 
1989). Efficient competition for the available nutri-
ents and for niches represents an important mech-
anism accounting for bacterial protection of plants 
against various pathogens (Stockwell et al., 1998; 
Punja and Utkhede, 2003; Pal and McSpadden-Gar-
dener, 2006; Cabrefiga et al., 2007; Lugtenberg and 
Kamilova, 2009). The suppression of B. cinerea infec-
tion through competition for niches and nutrients 
has been shown to be efficient in several in situ and 
in vivo studies (Table 2). Botrytis cinerea is highly sus-
ceptible to competition because external nutrients 
are required for conidial germination (Elad, 1996), 
germ tube growth and the successful completion of 
infection (Redmond et al., 1987; Elad and Stewart, 
2004). Furthermore, this mechanism was suggested 
to be one of the major mechanisms in the control 
of post-harvest diseases (Duffy, 2001; Spadaro and 
Gullino, 2004; Sharma et al., 2009; Jamalizadeh et al., 
2011). The ability of antagonists to rapidly colonize 

fruit wounds, prior to colonization by B. cinerea, is an 
important feature of post-harvest biocontrol agents 
that reduce grey mold incidence and/or severity in 
fruits (Nunes et al., 2001, 2002; Sharma et al., 2009; 
Jamalizadeh et al., 2011).

Given the limited nutritional resources at the 
leaf surface (Andrews, 1992; Huang and Erickson, 
2005), the efficiency of phylosphere colonization 
with nutrient uptake by bacteria is a key feature 
for successful antagonism by exhausting the avail-
able substrates and thus, reducing Botrytis infection. 
For instance, in greenhouse conditions, Pseudomonas 
putida Cha94 and Bacillus amyloliquefaciens BL3 con-
trolled B. cinerea infection on pepper by colonizing 
the floral and foliar canopies (Park et al., 1999). Simi-
larly, in bean and tomato plants, the severity of the 
B. cinerea infection and sporulation was reduced by 
several saprophytic bacterial isolates including Xan-
thomonas maltophilia, Bacillus pumilus, Lactobacillus sp. 
and Pseudomonas sp. (Elad et al., 1994). The effect of 
these isolates was due to competition on detached 
leaves for the available nutrients. Similarly, competi-
tion for nutrients by bacteria near spores may result 
in increased inhibition of germination of B. cinerea 
spores on leaf surfaces (Sztejnberg and Blakeman, 
1973; Brodie and Blakeman, 1975). 

Table 2. Examples of bacteria providing biocontrol of Botrytis cinerea, through competition for space and/or nutrients.

Antagonistic bacteria Plant/fruit/ conditions Mechanism of inhibition Reference

Pantoea agglomerans LRC 954, 
Pseudomonas fluorescens LRC 1788

Lentil seedling Competition for space and 
nutrients 

Huang and Erickson, 2005

Erwinia herbicola (Pantoea 
agglomerans)

Apple juice Competition for nutrients Bryk et al., 1998

Pseudomonas putida Cha94, B. 
amyloliquefaciens BL3

Pepper Competition for space and 
nutrients 

Park et al., 1999

Rahnella aquatilis Apple fruit/in vitro Competition for nutrients Calvo et al., 2007

Pantoea agglomerans Apple fruit Competition for space and 
nutrients 

Nunes et al., 2002

Bacillus sp.(isolate UYBC38) In vitro/in situ (grape, 
peach, and apple)

Competition for nutrients Rabosto et al., 2006

Paenibacillus polymyxa Strawberry fruit pulp 
suspension

Competition for nutrients Helbig, 2001

Xanthomonas maltophilia, Bacillus 
pumilus, Lactobacillus sp., 
Pseudomonas sp.

Bean and tomato Competition for nutrients Elad et al., 1994
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In the rhizosphere, good establishment of intro-
duced bacteria is also considered a critical factor that 
can limit their biocontrol efficacy (Lugtenberg and 
Kamilova, 2009). For example, the suppression of 
B. cinerea symptoms on lentil seedlings was demon-
strated following rhizosphere colonization by Pan-
toea agglomerans LRC 954 and Pseudomonas fluorescens 
LRC 1788 (Huang and Erickson, 2002, 2005).

Although conidial germination of B. cinerea de-
pends significantly on nutrient availability, interfer-
ence with the subsequent infection process may also 
occur by utilizing antagonistic bacteria that use the 
available nutrients more efficiently than the pathogen. 
The application of competitive bacteria on floral or-
gans, harbouring pollen grains, stigma exudates, and 
dead and/or senescent petals, deprives B. cinerea of 
important nutrient sources. Moreover, the exclusion 
of B. cinerea from an infection site by bacteria coloniz-
ing rapidly in this area might be a suitable method for 
protecting wounded host tissues, notably wounded 
fruits during maturation and post-harvest storage.

However, under post-harvest conditions, and re-
garding the rapid colonization potential of B. cinerea, 
growth and viability potential of introduced bacteria 
are required to enhance their efficacy and to ensure 
durable effects against the pathogen. It is important 
to note here that more BCA examples, involving this 
MoA, are found in yeasts. The capacity of yeasts to 
grow rapidly, with the rapid depletion of available 
nutrients, is associated with formation of biofilms 
covering wounds, and their tolerance to lower rela-
tive humidity levels make them highly efficient com-
peting BCAs under postharvest conditions (Wilson 
and Wisnieswski, 1994; Liu et al., 2013; Spadaro and 
Droby, 2016). In general, yeasts produce fewer anti-
biotics than bacteria, so this may be an advantage for 
using yeasts as BCAs under post-harvest conditions 
(Wisniewski and Wilson, 1992; Liu et al., 2013).

Antibiosis
Antibiosis is a commonly assumed mechanism 

in biocontrol activity of bacteria on leaf surfaces, in 
the rhizosphere and in fruit wounds (Ghaouth et al., 
2004). According to Thomashow et al. (1997), antibi-
otics encompass a chemically heterogeneous group 
of organic, low molecular weight compounds pro-
duced by microorganisms, that are deleterious to the 
growth or metabolic activities of other microorgan-
isms.

Antibiotic-producing microorganisms have of-
ten been considered first in screening for BCAs, us-
ing in vitro tests performed on agar and/or in liquid 
culture. Many literature reports support the great 
potential of bacteria that produce antifungal metab-
olites to control B. cinerea both in vitro and on a wide 
range of host plant species. The potential antifungal 
metabolites of numerous and various bacterial gen-
era and species (Bacillus, Paenibacillus, Pseudomon-
ads, Burkholderia and Streptomyces) are illustrated in 
Table 3.

Extensive research programmes show that Bacil-
lus is among the most effective bacterial genera for 
control of plant diseases (Nagorska et al., 2007; Onge-
na and Jacques, 2008; Raaijmakers et al., 2010; Kumar 
et al., 2011). Paenibacillus, originally included within 
Bacillus, has been reclassified as a separate genus 
(Ash et al., 1993). It is widely accepted that the Bacillus 
and Paenibacillus species produce various antifungal 
substances, including lipopeptide antibiotics, anti-
fungal proteins, volatile compounds, lytic enzymes, 
other antibiotics and plant defense-related enzymes 
(Selim et al., 2005; Huang and Chen, 2008; Ongena 
and Jacques, 2008; Raza et al., 2008; Govindasamy et 
al., 2010; Malfanova et al., 2012; Zhang et al., 2013; 
Zhao et al., 2013). Although most of the secondary 
metabolites produced by Bacillus spp. are peptide 
antibiotics (Ongena and Jacques, 2008; Pérez-García 
et al., 2011; Falardeau et al., 2013), the production of 
many non-peptide antibiotics has been reported for 
several Bacillus spp. (Baruzzi et al., 2011; Hamdache 
et al., 2012).

Among these antimicrobial compounds, the cy-
clic lipopeptides (LPs) are well studied in the context 
of the biological control of B. cinerea by bacteria. The 
involvement of these compounds in the protective 
action of the Bacillus spp. against B. cinerea under 
pre- and post-harvest conditions has been widely 
reported. Bacillus subtilis is a key species, and it in-
hibits the growth of a wide range of plant pathogens 
by producing a great variety of powerful antifungal 
metabolites, including lipopeptides (Stein, 2005; On-
gena et al., 2005). The cyclic lipopeptides belong to 
three major families, i.e., surfactin, iturin and fengy-
cin (or plipastatin). They have been highlighted for 
their potential use in biotechnological and biophar-
maceutical applications because of their surfactant 
properties (Ongena and Jacques, 2008). Surfactin 
shows surfactant activity and bactericidal effects 
and also hemolytic, antiviral and antimycoplasma 
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activities, but no marked fungitoxicity. Iturin and 
fengycin are cyclopeptides with antifungal activity 
(Leclère et al., 2005; Ongena and Jacques, 2008; Raai-
jmakers et al., 2010), particularly against pathogenic 
fungi and yeasts, but no antibacterial activity (Onge-
na and Jaques, 2008). In addition to these three main 
lipopeptide families, other lipopeptides, including 
kurstakin, maltacines, and polymyxins, have been 
identified in various Bacillus spp. (Raaijmakers et 
al., 2010; Borriss, 2015). The antimicrobial activity 
of lipopeptides is due to their ability to bind to li-
pid membrane bilayers in the pathogen cells, which 
causes permeability changes and/or structure dam-
age. While fengycin and iturin produce pores in the 
plasmamembrane, surfactin is reported to dissolve 
this structure (Henry et al., 2011; Patel et al., 2011; 
Pérez-García et al., 2011).

Previous studies demonstrated the important 
role of lipopeptides, not only in disease suppression 
(Thomashow and Weller, 1988; Keel et al., 1989) but 
also in the ability of the Bacillus species to colonize 
plant rhizospheres (Cao et al., 2011; Fan et al., 2011). 
Furthermore, these compounds play a key role in 
the beneficial interaction between Bacillus spp. and 
plants by acting as elicitors, stimulating plant im-
mune-related responses and then suppressing dis-
eases (Ongena and Jacques, 2008; Jourdan et al., 2009; 
Cawoy et al., 2014).  

Pseudomonads possess many traits that make 
them well suited as biocontrol and growth-promot-
ing agents. These include i) effective competition 
and colonization of plant surfaces, ii) the capacity to 
utilize seed and root exudates, and iii) rapid growth 
in vitro and the production of a wide range of bio-
active metabolites, such as antibiotics, siderophores, 
volatiles compounds, and growth-promoting sub-
stances (Weller, 1988, 2007). 

Many compounds produced by Burkholderia sp. 
exhibit antifungal activity, including lipopeptides, 
cepaciamides A and B, cepacidines, siderophores, 
altericidin, pyrrolnitrin, glidobactins and volatile 
compounds (Schmidt et al., 2009; Tenorio-Salgado et 
al., 2013). 

Many species of actinomycetes are also of great 
interest, particularly Streptomycetes, because nearly 
two thirds of all known antibiotics are produced by 
Streptomyces (Taechowisan et al., 2012; Lucas et al., 
2013; Mahajan and Balachandran, 2015). The genus 
includes well-known antifungal BCAs that inhibit 
various pathogenic fungi (El-Tarabily et al., 2000; Er-

rakhi et al., 2007; Loqman et al., 2009; Hamedi and 
Mohammadipanah, 2015).

The multiple antifungal activities of several anti-
biotics, their direct action on pathogens and the pos-
sible use of the antibiotic-rich bacterial culture su-
pernatants makes antibiosis one of the most illustrat-
ed bacterial MoAs. There have been comprehensive 
overviews of the antibiotics produced by beneficial 
bacteria used as BCAs, their potential functions 
and their role in biocontrol (Raaijmakers et al., 2002; 
Raaijmakers and Mazzola, 2012). However, little in-
formation is available about bacterial production of 
antimicrobial compounds under field conditions. 
The impact of several abiotic parameters on this pro-
duction, notably for lipopeptides, was reported by 
considering oxygen availability, temperature and ni-
trate sources (Tampakaki et al., 2009; Pretorius et al., 
2015). The potential wash-off by rainfall of the active 
compound(s) may also occur in the field. Antibiosis is 
considered an important MoA in the biological con-
trol of post-harvest diseases, but as discussed above, 
a BCA that does not produce antibiotics, or produces 
only a small amount of the compounds, might be 
more suitable under such conditions. Moreover, the 
resistance of the fungal pathogen, particularly B. ci-
nerea, against antibiotics produced by bacterial con-
trol agents has already been reported (Schoonbeek et 
al., 2002; Duffy et al., 2003; Bardin et al., 2015). Further 
investigations should address the environmental im-
pacts and biosafety issues of antibiotic compounds 
produced by bacteria used as BCAs.

Production of lytic enzymes and the 
interference with pathogen activity and 
growth

In addition to antibiotics, some biocontrol bacte-
rial strains produce other metabolites, such as en-
zymes that can interfere with the metabolic activi-
ties and/or growth of pathogens (Elad, 1996; Duffy 
et al., 2003; Compant et al., 2005). Some enzymes 
can degrade or detoxify virulence factors of plant 
pathogens. For example, oxalic acid contributes to 
the virulence of B. cinerea (Germeier et al., 1994). The 
degradation of oxalate by a bacterial strain closely 
related to Cupriavidus campinensis (named “oxB”) re-
duced B. cinerea pathogenicity of Arabidopsis thaliana 
and crop plants (Schoonbeek et al., 2007). The pro-
duction of extracellular cell wall-degrading enzymes 
is associated with the biocontrol abilities of bacteria. 
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Lytic enzymes, such as chitinases, glucanases, cel-
lulases, proteases, and lipases that degrade cell wall 
components of pathogenic fungi, contribute to direct 
suppression of plant pathogens (Neeraja et al., 2010; 
Maksimov et al., 2011; Bouizgarne, 2013). Halophilic 
bacteria, such as Virgibacillus marismortui, B. subtilis, 
B. pumilus, B. licheniformis, Terribacillus halophilus, 
Halomonas elongata, lanococcus rifietoensis, Staphylococ-
cus equorum and Staphylococcus sp., moderately sup-
pressed growth of B. cinerea in vitro, by producing 
extracellular antifungal hydrolytic enzymes, includ-
ing chitinase, β-1,3-glucanase, cellulase and protease 
(Essghaier et al., 2009). With respect to the control of 
B. cinerea by Bacillus cereus, the effect of strain IO8 
was mediated by chitinase production (Hammami 
et al., 2013). However, for another strain, B-02, anti-
fungal activity was caused by effects on DNA syn-
thesis, mitochondrial membrane potential and the 
reactive oxygen quantity in the pathogen hyphae 
(Li et al., 2012). Similarly, the role of chitinases was 
also revealed, in Bacillus thuringiensis UM96, to ac-
count for the protection of Medicago truncatula from 
B. cinerea infection (Martínez-Absalón et al., 2014). 
Joo (2005) demonstrated antifungal activity of puri-
fied chitinase from Streptomyces halstedii AJ-7 against 
various red pepper fungal pathogens, including B. 
cinerea.

Two strains of Pseudomonas sp. (B194 and B224) 
and two strains of Erwinia herbicola lysed B. cinerea 
germ tubes and hyphae (Bryk et al., 1998, 2004). Ser-
ratia plymuthica and S. marcescens produced lytic en-
zymes, such as chitinases and proteases, and inhibit-
ed growth of pathogens, including B. cinerea, Fusari-
um oxysporum, Sclerotinia sclerotiorum and Rhizoctonia 
solani (Frankowski et al., 2001; Kamensky et al., 2003; 
Ningaraju, 2006).

Another MoA is the inhibition of hydrolytic en-
zyme synthesis in B. cinerea during the first phase 
of the host-pathogen interaction, which is crucial 
for infection success (Baarlen et al., 2007; Nakajima 
and Akutsu, 2014; Nafisi et al., 2015). Decreases in 
the activities of pectin lyase and polygalacturonase 
produced by B. cinerea were observed during bio-
logical control on vines by Bacillus circulans (Paul 
et al., 1997). Similarly, bacterial metabolites, such as 
siderophores, may control B. cinerea by inhibiting 
portions of pathogen virulence factors. As an exam-
ple, enterochelin, from the enterobacterium Rahnella 
aquatilis BNM, inhibited pathogen production of 
polygalacturonase and laccase (Sansone et al., 2011; 

Sanz Ferramola et al., 2013). Thus, the inhibition of 
key B. cinerea enzymes enhances the inhibitory ac-
tivities of the biocontrol agents (Table 4).

The B. cinerea antagonist enzymatic activity by the 
BCA rapidly takes place at the host organ surface be-
fore and/or at the pathogen’s arrival. Botrytis cinerea 
is a fast-germinating pathogen which rapidly enters 
the host when there are wounds and/or when the 
host tissues are highly susceptible (Nair and Allen, 
1993; Ciliberti et al., 2015). This MoA may be less effi-
cient in the field because B. cinerea remains for only a 
short period at host surfaces before infection occurs. 
Compared to bacteria, yeasts also secrete lytic en-
zymes, and this is known to play an important role 
in their biocontrol activity (Wisniewski et al., 1991; 
Zimand et al., 1996; Kapat et al., 1998; Spadaro and 
Droby, 2016). Spadaro and Droby (2016) provided 
more information about the enzymes produced by 
yeasts, and their biocontrol roles in yeasts in post-
harvest situations. Although lytic enzymes might 
be effective against a wide spectrum of phytopatho-
gens, their non-specificity may result in suppression 
of beneficial microorganisms existing in particular 
environments (Pretorius et al., 2015).

Pathogen growth inhibition can also be achieved 
indirectly by changing the growth conditions on 
plant surfaces, to make them unsuitable for success-
ful infection. For example, B. pumilus NCIMB 13374 
and P. fluorescens NCIMB 13373 inhibited B. cinerea 
growth in strawberries by increasing the pH from 
6 to approx. 8. These bacterial strains also produce 
antifungal compounds (Swadling and Jeffries, 1998).

Production of volatile organic 
compounds

In recent years, the effects of bacterial volatile 
organic compounds on plants and pathogens have 
been increasingly studied. VOCs may be one of the 
key mechanisms for achieving successful biological 
control of plant pathogens (Ryu et al., 2004; Effmert 
et al., 2012). The emission of complex blends of VOCs 
by bacteria was reported in many studies (Kai et al., 
2009; Effmert et al., 2012). Volatile bacterial substanc-
es, identified by gas chromatography combined with 
mass spectrometry (GC-MS), may vary in number 
and type, depending on the bacterial isolate (Wan 
et al., 2008; Kai et al., 2009; Arrebola et al., 2010). For 
example, more than 120 different VOCs were identi-
fied from 26 Streptomyces spp., comprising alkanes, 
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alkenes, alcohols, esters, ketones, sulfur compounds, 
and terpenoids (Schöller et al., 2002). Bacterial VOCs 
inhibit or prevent fungal growth, impair fungal 
spores and hyphae, and/or promote plant growth 
(Kai et al., 2007; Kai et al., 2009; Weisskopf, 2013). 
However, the VOCs from one bacterial strain do not 
cause the same inhibitory effect, or to the same de-
gree, on different fungi. The responses may depend 
on the specific fungus–bacterial combination (Kai et 
al., 2009).

VOCs derived from the Streptomyces species can 
prevent growth of B. cinerea. For example, VOCs 
from Streptomyces platensis F-1 (phenylethyl alcohol 
and (+)-epi-bicyclesesquiphellandrene) suppressed 
pathogen growth. In addition to the reduction of 
Botrytis fruit rot in strawberry, they also decreased 
the level of leaf blight in rice and oilseed rape (Wan 
et al., 2008). In tomato fruit, the inhibitory effects of 
VOCs on growth of B. cinerea from VOCs produced 
by Streptomyces globisporus JK-1 grown on autoclaved 
wheat seeds has been demonstrated (Li et al., 2010).

Similarly, within the genera Bacillus and Paeniba-
cillus, the potential role of different VOCs to inhibit 
B. cinerea infection has been demonstrated, but only 
as one of the MoAs of these bacteria (Berrada et al., 
2012; Zhang et al., 2013). Different degrees of inhibi-
tory effects of VOCS from Paenibacillus polymyxa and 
Bacillus sp. (B. subtilis BLO2, B. pumilus BSH-4 and 
ZB13) were observed in vitro on S. sclerotiorum, B. 
cinerea and Cercospora kikuchii (Liu et al., 2008). Simi-
larly, Chen et al. (2008) showed the antagonistic ef-
fects of these compounds  generated by B. subtilis, 
on mycelial growth and the conidial germination of 
B. cinerea. For B. cereus (strain C1L), the protective 
effect against B. cinerea in tobacco was achieved by 
inoculating B. cereus into the soil, or by drenching the 
soil with dimethyl disulfide (Huang et al., 2012). The 
volatiles 1-octen-3-ol, benzothiazol, and citronellol, 
produced by P. polymyxa (strain BMP-11), inhibited 
mycelial in vitro growth of eight fungal pathogens, 
including B. cinerea (Zhao et al., 2011).

In addition to their strong antimicrobial inhibito-
ry potential, bacteria emit VOCs which can promote 
plant growth, enhance plant tolerance to abiotic 
stress, and elicit induced systemic resistance (ISR) 
(Ryu et al., 2003, 2004; Bhattacharyya et al., 2015; 
Kanchiswamy et al., 2015; Liu and Zhang, 2015). 
Because B. cinerea was recently considered an endo-
phyte (Van Kan et al., 2014), a potential antagonistic 
interaction might take place between the VOCs pro-
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duced by endophytic bacteria and the pathogen dur-
ing this endophytic stage. Furthermore, compared 
with diffusible compounds, VOCs may facilitate 
interactions between physically separated microor-
ganisms. VOC-producing bacteria are well suited 
to control fungal decay under post-harvest storage 
conditions in controlled environment, as biofumi-
gants, although safety issues associated with these 
biochemicals need to be evaluated.

Most studies concerning VOC effects on gray 
mold have been performed under controlled condi-
tions, and thus, their advantages and drawbacks for 
field applications must be considered. The impacts 
of environmental parameters, particularly air move-
ments, may be of major importance. Strong air cur-
rents could significantly decrease the concentration 
of produced VOCs, and limit their efficacy. Further-
more, adding nutrients into the soil, such as carbon 
sources, may promote bacterial production of VOCs 
(Fiddaman et al., 1994). A possible drawback of this 
MoA is the inhibitory effects of certain VOCs at high 
concentrations on plant growth (Bailly and Weis-
skopf, 2012). 

Induction of host plant resistance
In addition to these direct interactions, some 

plant growth-promoting bacteria are indirectly ef-
fective against plant pathogens by enhancing plant 
defense mechanisms, which is induced systemic 
resistance (ISR). This corresponds to a state of de-
fense in the whole plant, preparing it to respond 
more quickly and intensely to a pathogen attack 
(Van Loon et al., 1998; Bloemberg and Lugtenberg, 
2001). ISR involves the jasmonic acid (JA) and eth-
ylene (ET) signaling pathways (Pieterse et al., 1996; 
Glick, 2012). Several examples of bacterial strains 
eliciting resistance against B. cinerea were reported in 
different cultivated plant species. The induction of 
systemic resistance in grapevine using beneficial mi-
croorganisms was reviewed by Compant et al. (2013). 

Several compounds produced by bacteria, in-
cluding volatiles, siderophores, flagellin, and lipo-
peptides are known to elicite ISR against B. cinerea in 
many plant species (Ongena et al., 2005; Ongena and 
Jacques, 2008; Wu et al., 2015). As for P. aeruginosa, 
the strain 7NSK2 produces a siderophore, pyochelin, 
and the antibiotic pyocyanin, which trigger the ISR 
in both tomato and bean against B. cinerea (De Meyer 
and Hofte, 1997; De Meyer et al., 1999; Audenaert et 

al., 2002). While the LPS, siderophores, and flagellin 
produced by P. putida WCS358 induce resistance in 
Arabidopsis, LPS and siderophores were the only ac-
tive elicitors in bean and tomato to induce systemic 
resistance (ISR) (Meziane et al., 2005). Cawoy et al. 
(2014) found that adding 10 μM of pure surfactin re-
duced B. cinerea development on tobacco leaves. The 
ability of mycosubtilin (iturin family) from B. subti-
lis to trigger immune responses against B. cinerea in 
grapevine was reported by Farace et al. (2015). The 
ability of several bacteria, including Micromonospora, 
Saccharothrix algeriensis and P. fluorescens, has recent-
ly been shown to induce plant systemic resistance 
and then reduce B. cinerea infections (Muzammil et 
al., 2014; Gruau et al., 2015; Martínez-Hidalgo et al., 
2015).

Considering field development in the future, 
different factors may influence induced resistance 
in natura, including the plant genotype, the plant 
growth stage, the environment and plant nutrition 
(Heil, 2001; Walter et al., 2013). For B. cinerea, the 
importance of this MoA on grape berries is limited 
to the early fruit stages. Stilbenic phytoalexins are 
induced mostly in the early growth stages in grape 
berries, which progressively lose their potential for 
stilbene synthesis towards fruit maturity (PR pro-
teins are, however, possibly induced in such matur-
ing tissues). Furthermore, although hypersensitive 
responses (HR) were reported to be effective against 
many pathogens, host cell death induced by B. ci-
nerea in Arabidopsis promotes growth of the fungus 
(Govrin and Levine, 2000). Furthermore, this MoA 
is also associated with metabolic costs and energety 
trade-offs within host plants. These costs can include 
allocation from plant growth and development to-
wards defense, as well as ecological costs, such as 
negative effects on symbiotic interactions (Walters 
and Heil, 2007; Walters et al., 2013). However, more 
research must be carried out to provide better un-
derstanding of the effects of biotic and abiotic fac-
tors on plant induction for plant health, growth, and 
productivity.

Discussion and future prospects
We have described the different MoAs of bacte-

rial BCAs against B. cinerea, and some advantages 
and drawbacks of each have been cited for each 
MoA. It is important to emphasize that the lines be-
tween the different MoAs may be indistinct.  Most 
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bacterial biocontrol strains produce antibiotic com-
pounds and enzymes by which they interfere with 
pathogen growth and metabolic activity. Meanwhile, 
many lipopeptides and VOCs also induce host plant 
resistance. In terms of future field applications, some 
MoAs are likely to be of prime importance depend-
ing on B. cinerea epidemiology. A key example is the 
competition MoA for suppressing B. cinerea at host 
floral phenological stages, which are highly sus-
ceptible to the pathogen because of the abundant 
nutrient sources (pollen grains, floral exudates, se-
nescing petals). Another example of a potentially 
very well-suited MoA in relation to the pathogen 
infection pathway is the production of VOCs under 
post-harvest storage conditions. However, favour-
ing one specific MoA at a precise epidemiological 
stage, even if perfectly adapted, may not be suffi-
cient for insuring biocontrol efficacy. The bacterial 
BCAs must survive and multiply at host surfaces to 
interfere with the pathogen. For B. cinerea, we con-
sider the pathogen to be of minor epidemiological 
importance in the biological phase within the soil, so 
bacterial BCA survival and development should be, 
above all, assured at the surface of aerial host organs 
(leaves, flowers, fruits). Abiotic parameters related 
to temperature and relative humidity directly affect 
the survival of microorganisms, including microbial 
BCAs on the surfaces of host plants (Kredics et al., 
2003). In general, bacteria are more sensitive to mois-
ture and water availability than fungi. Bacteria may 
exhibit poor ability to survive in hot, dry summer 
conditions, with the exception of spore-forming bac-
teria (Bacillales) which survive as spores and resume 
active forms under favorable conditions. Natural 
bacterial populations on fruit surfaces are generally 
less than those of yeasts (Barata el al., 2012). Repeat-
ed sprays as field treatments seem to be required 
for bacterial BCAs. Some bacteria penetrate through 
host stomata or via injuries in leaves and stems, and 
then live also as endophytes without being disturbed 
by external abiotic and/or biotic stresses. From this 
point of view, bacteria in the Bacillale , notably Bacil-
lus spp., have been considered as BCAs of interest 
because of their potential endophytic aptitude (Ba-
con and Hinton, 2002). This is also why BCA bacte-
rial strains isolated from the host plant to be pro-
tected are likely to be well-adapted for survival and 
development on and within that host. It should be 
noted that recent molecular methods are likely to be 
of prime importance for detection and quantification 

of specific BCA strains in particular environments. 
These technologies are also well-suited for assessing 
location, proliferation and/or survival of BCAs on 
and within host plants (Narayanasamy, 2013; Soto-
Muñoz et al., 2014).

Biological control with microorganisms presents 
inherent variability in efficacy, notably depending 
on the different MoAs and the host plants and or-
ganisms involved. Furthermore, the effects of exter-
nal abiotic factors under field conditions represent 
another important source of variability in efficacy. 
Therefore, biological control of disease in the field, 
based on only one MoA, may result in moderate and 
highly variable efficacy and be of little significance 
from a commercial point of view. The combination 
of different MoAs is widely considered as a strategy 
to overcome the variability in the biocontrol of fruit 
pathogens, including B. cinerea (Elmer and Reglin-
ski, 2006; Romanazzi et al., 2016). Furthermore, there 
may be risk of loss of biocontrol durability, which 
has been little studied but is likely to be important 
in the near future. As for chemicals, a combination of 
different MoAs, particularly for synthetic fungicides, 
is a key strategy for reducing risks of development of 
resistance to pesticides . Thus, a similar strategy may 
be promoted in biocontrol (Bardin et al., 2015).

When dealing with bacteria, a combination of dif-
ferent MoAs can be achieved in different ways. First, 
one species showing more than one MoA (Lahlali et 
al., 2013) can be used. Production of several differ-
ent antibiotic molecules by the one species may also 
be considered here. For example, B. subtilis strains 
produce several cyclic lipopeptides (Falardeau et al., 
2013). Second, two bacterial strains (from the same 
or from different species) can be used together, each 
presenting a different MoA (Magnin-Robert et al., 
2013). Third, different MoAs can be used at differ-
ent times, depending the stage of the particular grey 
mold epidemic. Specific MoAs may be more appro-
priate at key epidemiological stages than others.

From practical perspectives, combinations with 
non-bacterial microorganisms and/or with natural 
products may also be worth considering, either in 
joint applications or focusing according to key epi-
demiological stages. Yeast and yeast-like fungi are 
complementary to bacteria by surviving in different 
conditions, or by being more efficient as saprophytic 
competitors  (Nunes et al., 2002). Natural products 
may improve the dispersion, persistence and sur-
vival on plant phylloplanes, but others also elicit 
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natural plant defenses and/or increase the efficacy 
of biocontrol treatments by contributing to pathogen 
growth suppression (Teixidó et al., 2001). Combina-
tions with fungicide treatments can also be effective 
in conventional agriculture; however, compatibility 
with phytosanitary products can be another impor-
tant consideration, as well as in combination with 
natural products (Francesco and Mari, 2014).

Some examples of MoA combinations have been 
considered in the literature. However, few combined 
field biocontrol programmes with trusted efficacy are 
yet to become available. Therefore, more applied re-
search, focused on such combinations, is necessary,, 
especially in the field, combining commercialized 
products and also products in developmental stages 
for different crops. Public institutions and extension 
services may adapt combinational strategies to local 
conditions. Nonetheless, the private sector should 
also be involved in developing such strategies and 
supporting public research to improve the variable, 
and sometimes poor, efficacy of some of the biocon-
trol products already available. In parallel, new in-
vivo and field screenings, associated with studies on 
the effects of BCAs on the more general microbiota, 
and on the particular MoAs of each effective strain, 
will allow for the design of new combinations and 
timings to be tested in the field. This should be based 
on a priori knowledge of complimentary MoAs, and 
this approach is likely to become more widely used 
and purposeful thanks to new tools provided by 
next generation sequencing technologies (Massart et 
al., 2015). 

Another constraint for biological control with 
bacteria is the necessity for adequate registration 
systems prior to commercialization. Most of the 
regulations are following the OECD guidance docu-
ments, particularly the #67 published in 2012. The 
EU through the EFSA assessment procedure inte-
grates BCAs as “biopesticides” entering in the com-
mon registration process for all pesticides (Regula-
tion EC 1107/2009). BCAs are considered as low risk 
according to their sustainable use, and can be includ-
ed in safe integrated pest management (IPM) prac-
tices (Villaverde et al., 2014). Regulations in the USA 
are more specific for biopesticides, depending on the 
Environmental Protection Agency (EPA). Registra-
tion is a long and difficult process that is common 
for every biological control product, limiting the 
development of bacterial or fungal BCAs. This has 
been discussed in several publications, where the 

constraints related to different modes of action are 
also outlined (Spadaro and Gullino, 2010; Walters 
et al., 2012; Bashan et al., 2014; OECD report, 2014). 
Nonetheless, there is a growing perspective for more 
appropriate consideration of the properties and haz-
ards of BCAs, which may lead to simpler evaluations 
of the human and environmental safety of biocontrol 
products in the future (Sundh, 2014). 

In conclusion, bacterial antagonists represent an 
important biocontrol option against diseases caused 
by B. cinerea, due to their rapid development and 
the variety of antifungal and defense elicitor com-
pounds they produce. Some MoAs are likely to be 
more suitable than others to concrete conditions in 
pre- and/or postharvest stages. However, combina-
tion of different MoAs, and combination with other 
control strategies, is likely to provide opportunities 
to reduce variability in biocontrol efficacy. Basic and 
applied research is therefore needed to design more 
refined application programmes, which will provide 
reliable solutions for plant protection and produc-
tion in conventional and organic agriculture in the 
near future.
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