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1. Introduction

Lobesia botrana, the European grapevine moth (EGVM), is a grape pest causing important economic damages [20]. Not
only does it reduce the number of fruits, especially in spring when buds are flowering or berries are young, but also
affecting their quality by favoring indirect damages related to different pathogens developing on the fruits, such as the grey
mold or, in several warm vineyards, the black rots that may produce fungi toxins like ochratoxins [20]. Several families
of pesticides are used to decrease the population size of the moth, but serious environmental damages can ensue from
their use. Such phytosanitary problems could become more prevalent in the future due to climatic changes. Currently, the
control procedures for this pest rely mainly on larval growth regulators, slightly on mating disruption (no more than 2%
of the French wine areas in 2007) and scarcely on Bt toxin in sprays. One problem concerning these control techniques is
that their efficiency depends upon the timing of the treatment and its synchrony with a few specific steps of the pest life
cycle such as adult flight and oviposition periods. Therefore, population dynamic models should prove to be very helpful
to determine an optimal window of time in the life history cycle. Researchers are developing some tools to control these
insect populations and also to reduce the application of chemical plant health products. Their goal is to predict the periods
of appearance of the insect in the vineyard, and mathematical models may help achieve this objective.

Like in many insects, the life cycle of the EGVM can be divided into four developmental stages, which are egg, larva, pupa
and moth. The first three stages correspond to the insect growth and the last stage to adulthood. This life cycle is repeated
two to five times per year depending on the vineyard latitude [20]. As a function of temperature and food availability,
this cycle lasts about two months during spring and less in summer, with a critical minimum duration of one month for
a complete generation. The winter generation diapauses as a pupa and lasts circa six months. We are interested, in this
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paper, in the spring and summer generations where the pupa stage lasts one week, and we assume that the pupal stage is
included in the larval stage to form a single stage, the larval stage.

The developmental time of each growth stage varies with the individual, but also as a result of environmental variables
and resource quality and availability. The major factor that affects the insect growth is temperature, but others may also
contribute favorably or negatively to the individual growth and to the population size. Experimental data obtained on field
populations and in various geographical areas shows the effect of the moisture factor [1,6,15]. It contributes to accelerate
or slow down the insect growth and, for specific values, to drastically increase the mortality of the offspring. Food quality,
especially grape variety consumed by the larva, affects several life history traits related to the reproductive success [10,11,
13,19]. Thus, the climatic and environmental variables considered here are temperature, moisture, and grape variety as a
provider differential food quality to the growing larval instars. The competition for food between larvae is also modeled
because it plays a role in the mortality rate. Other factors, such as predation, affect the population dynamics of this in-
sect through the mortality rate. We have neglected these factors in this study and focus on the modeling of the natural
development of several cohorts of this insect.

Since 1979, several models have been developed to predict the population “peaks” of this insect in vineyards [3,4,22].
These models, which are ordinary differential equations or discrete equations, describe the period and the length of the
spring and summer population dynamics for egg, larval and adult stages. The temperature is the only environmental fac-
tor implicated to predict the population size in time as a growth factor. As a consequence, other relevant aspects of the
dynamics, for example the mortality or inter-cohort growth variations, are missing and the predictions are not satisfying.

In the literature, Partial Differential Equations (PDEs) are also used to describe the dynamics of a single population [14].
These equations enable us to model physiological characteristics such as age or size to differentiate individuals within
a cohort. For example, Sinko and Streifer’s model is the well-known model used in the study of age-size structured popula-
tions [5,18].

To explore the importance of growth variations within a cohort, we propose to model the EGVM population dynamics by
a stage-structured population model based on PDEs. This article is then built as follows: In Section 2 we present the model
called Lobesia botrana model (LBM) and we provide a proof of existence and uniqueness of its solution based on fixed point
theory. In Section 3, we show some simulations of LBM and compare them with field experimental data.

2. The Lobesia botrana model and its well-posedness

To properly describe the reproductive cycle of the EGVM, we consider a multistage, physiologically structured, population
model. We denote by ue , ul , um , and u f , respectively, the age density distribution at time t of egg, larva, male and female
populations. The total population for the k-stage is then defined by

Pk(t) =
Lk∫

0

uk(t,a)da, t � 0,

where Lk is the maximum age for the k-stage, and k takes the value e for egg, l for larva, m for male and f for female. The
model describing the dynamics of these populations reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
ue(t,a) + ∂

∂a

[
ve(E(t),a

)
ue(t,a)

] = −me(E(t),a
)
ue(t,a) − βe(E(t),a

)
ue(t,a),

∂

∂t
ul(t,a) + ∂

∂a

[
vl(E(t),a

)
ul(t,a)

] = −ml(Pl(t), E(t),a
)
ul(t,a) − βl(E(t),a

)
ul(t,a),

∂

∂t
u f (t,a) + ∂

∂a

[
v f (E(t),a

)
u f (t,a)

] = −m f (E(t),a
)
u f (t,a),

∂

∂t
um(t,a) + ∂

∂a

[
vm(

E(t),a
)
um(t,a)

] = −mm(
E(t),a

)
um(t,a),

(2.1)

where the time variable t is defined on [0, T ] and the age variable a is given on [0, Lk], k = e, l, f ,m. We denote by Ωk the
domain [0, T ] × [0, Lk], k = e, l, f ,m.

The vector E = (T , H, R) corresponds to the climatic and environmental factors where T is the temperature factor, H the
humidity factor and R the grape variety factor. The vector E is time-dependent. We stress that R is not the quantity of food
eaten by the larva but rather depends on the species of the vine.

The functions mk , k = e, l, f ,m, are the k-stage age-specific per capita mortality functions. To model the inter-individual
competition between larvae for food, we assume that ml depends on the total larvae population.

The functions βk , k = e, l, correspond to the k-stage age-specific transition functions. In particular, βe-called the hatching
function-models the physiological change between egg and larval stages. The emerging adult function βl is the transition
between the larval and moth stages. The transition function between the moth and egg stages is modeled by the func-
tion β f . The common name is the age-specific per capita birth function. Observations on EGVM indicate that the population
does not grow exponentially but reaches a threshold value determined by the carrying capacity of the food. One bunch can
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hardly house more than 15 larvae depending upon the bunch size [19]. The growth of the population size is not restricted
by the food quantity but by the total number of moths per unit of volume. Therefore, the birth function is dependent on
the density of individuals.

The study of laboratory data shows a difference in growth between individuals assembled in cohorts [1,10,11]. This
phenomenon is classical and has been observed for many other species. Mathematicians often model growth variability
by introducing growth function that depends on the physiological age [5]. In LBM, functions vk , k = e, l, f ,m, represent
the k-stage age-specific per capita growth functions. These functions are age-dependent and, coupled with the transition
functions, allow us to model great variability of growth within a cohort.

The set of demographic functions (mk , vk , βe , βl , β f ), k = e, l, f ,m, vary with the climatic and environmental factors E .
The boundary conditions related to (2.1) are defined in (2.2),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ve(E(t),0
)
ue(t,0) =

L f∫
0

β f (P f (t), Pm(t), E(t), s
)
u f (t, s)ds,

vl(E(t),0
)
ul(t,0) =

Le∫
0

βe(E(t), s
)
ue(t, s)ds,

v f (E(t),0
)
u f (t,0) =

Ll∫
0

τβl(E(t), s
)
ul(t, s)ds,

vm(
E(t),0

)
um(t,0) =

Ll∫
0

(1 − τ )βl(E(t), s
)
ul(t, s)ds,

(2.2)

where τ denotes the sex-ratio and t > 0; the initial conditions are given in (2.3),

uk(0,a) = uk
0(a), a ∈ [

0, Lk], k = e, l, f ,m. (2.3)

The equations in (2.2) model, respectively, the total number of new eggs, larvae, female and male moths at time t . Note that
the integral over an age range of the product vkuk , k = e, l, f ,m, does not represent in this model a number of individuals
at the corresponding time. Indeed, in similar models we have, for example, a size structured population model [5,7,18]
where this integral represents the total biomass of the population at time t . For the model (2.1), this integral has no clear
biological meaning, except that it represents some measure of the “total maturity” of the population at time t .

Many population models using PDEs are used to describe a whole population instead sub-populations as LBM does.
Although the equations related to adult stages of (2.1) look like Sinko and Streifer’s model from a mathematical point of
view, the first two equations are not equivalent to their population models because of the additional terms modeling the
proportion of individuals who change physiological state. Moreover, the additional terms of the egg and larval equations are
also the boundary conditions of the larval and adult stages respectively. Therefore, all equations in our system are dependent
from each other, making the mathematical analysis more complicated. Finally, even though there exist many species with a
similar life cycle to that of EGVM, LBM does not exist in the literature. Also, because of its original form, LBM enables us to
study new mathematical and biological questions.

2.1. Existence and uniqueness

In this subsection, we are looking for the well-posedness of the mathematical model (2.1)–(2.3).
First, we define the functions hk , for k = e, l, f ,m, by⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

he(t,a) = (
me + βe + ∂a ve)(E(t),a

)
,

hl(t,a) = ml(Pl(t), E(t),a
) + (

βl + ∂a vl)(E(t),a
)
,

h f (t,a) = (
m f + ∂a v f )(E(t),a

)
,

hm(t,a) = (
mm + ∂a vm)(

E(t),a
)
,

where ∂a vk denotes the first derivative of the function vk with respect to the age variable. Then, using the method of
characteristics (see, for example, [2] for an introduction to the method) we get the following implicit equations for the
densities ue , ul , u f and um ,

uk(t,a) =
⎧⎨
⎩

uk
0(Xk(0; t,a))e− ∫ t

0 hk(s,Xk(s;t,a))ds, a > Xk(t),

uk(Zk(0;t,a),0)
k k e

− ∫ t
Zk(0;t,a)

hk(s,Xk(s;t,a))ds
, a � Xk(t),

(2.4)
v (E(Z (0;t,a)),0)
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for k = e, l, f ,m, where Xk(t; t,a) and Zk(a; t,a) are the characteristic curves for the k-stage equation, passing through the
point (t , a) and satisfying, respectively, these initial value problems:{(

Xk)′
(t) = vk(E(t), Xk(t)

)
,

Xk(0) = 0,
(2.5)

for the time-dependent characteristic curve and{(
Zk)′

(a) = vk(E
(

Zk(a)
)
,a

)
,

Zk(0) = 0,
(2.6)

for the characteristic curve expressed in the age variable. The existence of these solutions depends on the properties of the
demographic functions and initial conditions. We then define the following assumptions.

H1. The growth functions vk , for k = e, l, f ,m, are bounded, non-negative functions at age 0:

0 < vk < vk(E(t),0
)
< vk, ∀t ∈ [0, T ],

and continuously differentiable with respect to the age variable:∥∥∥∥∂vk(E(t),a)

∂a

∥∥∥∥∞
� Cvk , ∀(t,a) ∈ Ωk,

where Cvk are positive constants.
H2. The hatching function βe(E(t),a) and the flying function βl(E(t),a) are bounded, and non-negative functions with

respect to the age variable.
H3. The birth function β f (P f , E(t),a) is bounded, non-negative with respect to the age variable, and is Lipschitz with

constant β
f
K with respect to the first variable P f .

H4. The mortality functions me(E(t),a), m f (E(t),a) and mm(E(t),a) are non-negative, locally bounded, and satisfy the con-
ditions

lim
a→Lk

t∫
0

mk(E(t), Xk(s; t,a)
)

ds = ∞, a > Xk(t),

lim
a→Lk

t∫
Zk(0;t,a)

mk(E(t), Xk(s; t,a)
)

ds = ∞, a � Xk(t),

for t > 0 and k = e, f ,m. The functions Xk and Zk are the characteristic curves defined in (2.5) and (2.6).
H5. The mortality function of the larva stage, ml(Pl, E(t),a), is non-negative, locally bounded, Lipschitz with respect to the

first variable, and satisfies the conditions

lim
a→Ll

t∫
0

ml(Pl(t), E(t), Xl(s; t,a)
)

ds = ∞, a > Xl(t),

lim
a→Ll

t∫
Zl(0;t,a)

ml(Pl(t), E(t), Xl(s; t,a)
)

ds = ∞, a � Xl(t),

for t > 0. The functions Xl and Zl are the characteristic curves defined in (2.5) and (2.6).
H6. The initial functions uk

0, for k = e, l, f ,m are non-negative.

As the solutions ue , ul , u f and um exist under the previous hypothesis, we are looking for their uniqueness. Accord-
ing to Eq. (2.4), the four density functions are linked through their boundary conditions. Indeed, the density of the egg
population, ue , is expressed by the number of newborns laid by all the females. The densities describing the adult stages,
u f and um are dependent on the larval density ul , whereas this last is dependent on the egg density ue . To overcome this
difficulty in our result of uniqueness, we propose to modify our model so that we can apply a fixed point argument to reach
our goal. Theorem 1 and its proof present this result.

Theorem 1. Under the hypotheses (H1)–(H6), the system (2.1)–(2.3) admits a unique solution.
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Proof. Let λ be a positive constant and introduce the following variables

uk(t,a) = eλt ûk(t,a), k = e, l, f ,m. (2.7)

Using (2.7), the system (2.1)–(2.3) is then transformed into system (2.8)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
ûe(t,a) + ∂

∂a

[
ve(E(t),a

)
ûe(t,a)

] + λûe(t,a) = −me(E(t),a
)
ûe(t,a) − βe(E(t),a

)
ûe(t,a),

∂

∂t
ûl(t,a) + ∂

∂a

[
vl(E(t),a

)
ûl(t,a)

] + λûl(t,a) = −ml(Pl, E(t),a
)
ûl(t,a) − βl(E(t),a

)
ûl(t,a),

∂

∂t
û f (t,a) + ∂

∂a

[
v f (E(t),a

)
û f (t,a)

] + λû f (t,a) = −m f (E(t),a
)
û f (t,a),

∂

∂t
ûm(t,a) + ∂

∂a

[
vm(

E(t),a
)
ûm(t,a)

] + λûm(t,a) = −mm(
E(t),a

)
ûm(t,a),

ve(E(t),0
)
ûe(t,0) =

L f∫
0

β f (P f (t), E(t), s
)
û f (t, s)ds,

vl(E(t),0
)
ûl(t,0) =

Le∫
0

βe(E(t), s
)
ûe(t, s)ds,

v f (E(t),0
)
û f (t,0) = τ

Ll∫
0

βl(E(t), s
)
ûl(t, s)ds,

vm(
E(t),0

)
ûm(t,0) = (1 − τ )

Ll∫
0

βl(E(t), s
)
ûl(t, s)ds,

ûk(0,a) = ûk
0(a), k = e, l, f ,m,

(2.8)

which admits a solution under the hypotheses (H1)–(H6). Now, we consider the following system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
ûe(t,a) + ∂

∂a

[
ve(E(t),a

)
ûe(t,a)

] + λûe(t,a) = −me(E(t),a
)
ûe(t,a) − βe(E(t),a

)
ûe(t,a),

∂

∂t
ûl(t,a) + ∂

∂a

[
vl(E(t),a

)
ûl(t,a)

] + λûl(t,a) = −ml(Pl
φ, E(t),a

)
ûl(t,a) − βl(E(t),a

)
ûl(t,a),

∂

∂t
û f (t,a) + ∂

∂a

[
v f (E(t),a

)
û f (t,a)

] + λû f (t,a) = −m f (E(t),a
)
û f (t,a),

∂

∂t
ûm(t,a) + ∂

∂a

[
vm(

E(t),a
)
ûm(t,a)

] + λûm(t,a) = −mm(
E(t),a

)
ûm(t,a),

ve(E(t),0
)
ûe(t,0) =

L f∫
0

β f (P f
φ (t), E(t), s

)
û f (t, s)ds,

vl(E(t),0
)
ûl(t,0) =

Le∫
0

βe(E(t), s
)
ûe(t, s)ds,

v f (E(t),0
)
û f (t,0) = τ

Ll∫
0

βl(E(t), s
)
φ(t, s)ds,

vm(
E(t),0

)
ûm(t,0) = (1 − τ )

Ll∫
0

βl(E(t), s
)
φ(t, s)ds,

ûk(0,a) = ûk
0(a), k = e, l, f ,m,

(2.9)

where φ is a function in L2(Ωl). From this last system (2.9), we get a uniqueness result that is summarized in Lemma 1.
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Lemma 1. Let (H1)–(H6) be satisfied and ∧ be the operator defined by

∧ : L2(Ω l) → L2(Ω l),
φ → ûl (2.10)

where ûl is the unique solution of (2.9). If λ satisfies the condition

(
λ − Cvl − ‖ûl

2‖2
L∞

2ε

)
(λ − Cve )(λ − Cv f ) >

(
D + (λ − Cve )(λ − Cv f )

ε

2

(
ml

N Ll)2
)

,

for some positive constants ε and D, then ∧ is contractive.

Assuming that Lemma 1 is true, the operator ∧ defined in (2.10) has a fixed point that will be named ûl , which is the
unique solution of (2.9). This last result also proves that the density ûl is the unique solution of (2.8) and, by using the
change of variables given in (2.7), that the density ul is the unique solution of our initial problem (2.1)–(2.3). Eq. (2.4) then
gives us the unique existence of densities ue , u f and um , concluding the proof of Theorem 1. �
Proof of Lemma 1. Let φi , for i = 1,2, be two functions satisfying system (2.9). And let φ = φ1 − φ2, ûl = ûl

1 − ûl
2, ûe =

ûe
1 − ûe

2, û f = û f
1 − û f

2 and ûm = ûm
1 − ûm

2 . We multiply the first equation of system (2.9) by ûe , the second by ûl , the third
by û f and the fourth by ûm to obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

∂

∂t

(
ûe(t,a)

)2 + ûe(t,a)
∂

∂a

[
ve(E(t),a

)
ûe(t,a)

] + λ
(
ûe(t,a)

)2 = −(
me(E(t),a

) + βe(E(t),a
))(

ûe(t,a)
)2

,

1

2

∂

∂t

(
ûl(t,a)

)2 + ûl(t,a)
∂

∂a

[
vl(E(t),a

)
ûl(t,a)

] + λ
(
ûl(t,a)

)2 = −(
ml(Pl

φ, E(t),a
) + βl(E(t),a

))(
ûl(t,a)

)2
,

1

2

∂

∂t

(
û f (t,a)

)2 + û f (t,a)
∂

∂a

[
v f (E(t),a

)
û f (t,a)

] + λ
(
û f (t,a)

)2 = −m f (E(t),a
)(

û f (t,a)
)2

,

1

2

∂

∂t

(
ûm(t,a)

)2 + ûm(t,a)
∂

∂a

[
vm(

E(t),a
)
ûm(t,a)

] + λ
(
ûm(t,a)

)2 = −mm(
E(t),a

)(
ûm(t,a)

)2
.

These last equations are then integrated, respectively, on the domains Ωe , Ωl , Ω f , Ωm , to get after some computations the
following system,

∫
Ωe

(
λ + me(E(t),a

) + βe(E(t),a
) + 1

2
∂a ve(E(t),a

))(
ûe(t,a)

)2
da dt = 1

2

T∫
0

ve(E(t),0
)(

ûe(t,0)
)2

dt,

∫
Ωl

(
λ + ml(Pl

φ1
(t), E(t),a

) + βl(E(t),a
) + 1

2
∂a vl(E(t),a

))(
ûl(t,a)

)2
da dt

= −
∫
Ωl

(
ml(Pl

φ1
(t), E(t),a

) − ml(Pl
φ2

(t), E(t),a
))

ûl
2(t,a)ûl(t,a)da dt + 1

2

T∫
0

vl(E(t),0
)(

ûl(t,0)
)2

dt,

∫
Ω f

(
λ + m f (E(t),a

) + 1

2
∂a v f (E(t),a

))(
û f (t,a)

)2
da dt = 1

2

T∫
0

v f (E(t),0
)(

û f (t,0)
)2

dt,

∫
Ωm

(
λ + mm(

E(t),a
) + 1

2
∂a vm(

E(t),a
))(

ûm(t,a)
)2

da dt = 1

2

T∫
0

vm(
E(t),0

)(
ûm(t,0)

)2
dt.

These last equations become inequalities (2.11) using hypotheses (H1)–(H6).
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(λ − Cve )

∫
Ωe

(
ûe(t,a)

)2
da dt � 1

2

T∫
0

ve(E(t),0
)(

ûe(t,0)
)2

dt,

(λ − Cvl )

∫
Ωl

(
ûl(t,a)

)2
da dt � 1

2

T∫
0

vl(E(t),0
)(

ûl(t,0)
)2

dt

−
∫
Ωl

(
ml(Pl

φ1
(t), E(t),a

) − ml(Pl
φ2

(t), E(t),a
))

ûl
2(t,a)ûl(t,a)da dt,

(λ − Cv f )

∫
Ω f

(
û f (t,a)

)2
da dt � 1

2

T∫
0

v f (E(t),0
)(

û f (t,0)
)2

dt,

(λ − Cvm )

∫
Ωm

(
ûm(t,a)

)2
da dt � 1

2

T∫
0

vm(
E(t),0

)(
ûm(t,0)

)2
dt,

(2.11)

where the time-integrals over the domain [0, T ] are also equal, in view of the boundary conditions in (2.9), to the following
equations,

1

2

T∫
0

ve(E(t),0
)(

ûe(t,0)
)2

dt = 1

2

T∫
0

1

ve(E(t),0)

( L f∫
0

β f (P f
1

)
û f (t, s)ds +

L f∫
0

(
β f (P f

1

) − β f (P f
2

))
û f

2 (t, s)ds

)2

dt,

1

2

T∫
0

vl(E(t),0
)(

ûl(t,0)
)2

dt = 1

2

T∫
0

1

vl(E(t),0)

( Le∫
0

βe(E(t), s
)
ûe(t, s)ds

)2

dt,

1

2

T∫
0

v f (E(t),0
)(

û f (t,0)
)2

dt = 1

2

T∫
0

τ 2

v f (E(t),0)

( Ll∫
0

βl(E(t), s
)
φ(t, s)ds

)2

dt,

1

2

T∫
0

vm(
E(t),0

)(
ûm(t,0)

)2
dt = 1

2

T∫
0

(1 − τ )2

vm(E(t),0)

( Ll∫
0

βl(E(t), s
)
φ(t, s)ds

)2

dt.

Consider now the second inequality of (2.11) and the two integrals on the right-hand side. We apply the Cauchy–Schwartz
inequality to the first integral and Young’s inequality to the second one, and we see that

(λ − Cvl )

∫
Ωl

(
ûl(t,a)

)2
da dt � 1

2

T∫
0

1

vl(E(t),0)

Le∫
0

(
βe(E(t), s

))2
ds

Le∫
0

(
ûe(t, s)

)2
ds dt

+
∫
Ωl

ε

2

(
ml(Pl

φ1
(t), E(t),a

) − ml(Pl
φ2

(t), E(t),a
))2

da dt

+
∫
Ωl

1

2ε

(
ûl

2(t,a)ûl(t,a)
)2

da dt,

where ε is a positive constant. Hypotheses (H1)–(H6) enable us to conclude that inequality (2.11) is equivalent to (2.12)

(
λ − Cvl − ‖ûl

2‖2
L∞

2ε

)∫
Ωl

(
ûl(t,a)

)2
da dt �

Le‖βe‖2
L∞(Ωe)

2vl

∫
Ωe

(
ûe)2

(t, s)ds dt

+ ε

2

(
ml

N Ll)2
∫

l

(φ1 − φ2)
2(t, s)ds dt, (2.12)
Ω
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which depends on the L2(Ωe)-norm of the egg stage density. We estimate this norm from the first inequality of (2.11), by
expanding the square of the sum in the right-hand side of (2.12) and by applying the Cauchy–Schwartz inequality to each
of the terms on the right side, to finally get the following:

(λ − Cve )

∫
Ωe

(
ûe(t,a)

)2
da dt � 1

2

T∫
0

1

ve(E(t),0)

L f∫
0

(
β f (P f

1

))2
ds

L f∫
0

(
û f (t, s)

)2
ds

+ 1

2

T∫
0

1

ve(E(t),0)

L f∫
0

(
β f (P f

1

) − β f (P f
2

))2
ds

L f∫
0

(
û f

2 (t, s)
)2

ds dt

+
T∫

0

1

ve(E(t),0)

L f∫
0

β f (P f
1

)
û f (t, s)ds

L f∫
0

(
β f (P f

1

) − β f (P f
2

))
û f

2 (t, s)ds dt,

or equivalently, by using hypotheses (H1)–(H6), to inequality (2.13),

(λ − Cve )

∫
Ωe

(
ûe(t,a)

)2
da dt � D1

∫
Ω f

(
û f (t, s)

)2
ds, (2.13)

where D1 is a positive constant equal to

D1 = L f ‖β f ‖2
L∞

2ve
+ (L f β

f
K )2‖û f

2 ‖2
L∞

2ve
+ L f ‖β f

1 ‖2
L∞‖û f

2 ‖L∞β
f
K

ve
.

The third inequality of (2.11) is used to estimate the norm in L2(Ω f ) of the female density, by using the same method used
to get (2.12) and (2.13), that gives

(λ − Cv f )

∫
Ω f

(
û f (t,a)

)2
da dt �

Llτ 2‖βl‖2
L∞(Ωl)

2v f

∫
Ωl

(
φ(t, s)

)2
ds. (2.14)

Now, we use (2.14) to rewrite (2.13) in the form

(λ − Cv f )(λ − Cve )

∫
Ωe

(
ûe(t,a)

)2
da dt � D1

Llτ 2‖βl‖2
L∞(Ωl)

2v f

∫
Ωl

(
φ(t, s)

)2
ds,

and we use this last inequality in (2.12) to conclude that(
λ − Cvl − ‖ûl

2‖2
L∞

2ε

)
(λ − Cve )(λ − Cv f )

∫
Ωl

(
ûl(t,a)

)2
da dt

�
(

D + (λ − Cve )(λ − Cv f )
ε

2

(
ml

N Ll)2
)∫

Ωl

(φ)2(t, s)ds dt,

where D is a positive constant given by

D = D1

Llτ 2‖βl‖2
L∞(Ωl)

2v f

Le‖βe‖2
L∞(Ωe)

2vl
.

Let c be the constant defined by

c = (D + (λ − Cve )(λ − Cv f )
ε
2 (ml

N Ll)2)

(λ − Cvl − ‖ûl
2‖2

L∞
2ε )(λ − Cve )(λ − Cv f )

.

For fixed ε and λ chosen sufficiently large to satisfy the condition

D + (λ − Cve )(λ − Cv f )
ε

2

(
ml

N Ll)2
<

(
λ − Cvl − ‖ûl

2‖2
L∞

2ε

)
(λ − Cve )(λ − Cv f ),

c lies in the interval [0,1] and ∧ is a contractive operator, as claimed. �
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Fig. 1. Chavent’s field experimental data from April to September 1983. Left: Female (solid) and male (dash dot) flight dynamics. Right: Daily mean temper-
atures.

3. Simulations

In this section, we apply LBM on a set of field experimental data and we compare these simulations with the measured
population dynamics. The two first subsections are devoted to the presentation of the data, the definition of the model’s
demographic functions and the methods developed to produce simulations. In the last one, we present the results and we
discuss them.

3.1. Material and methods

Field experimental data
In the literature, one can find very few field experimental data related to EGVM. We go back in 1983 to find Chavent’s

data [6] who measured adult flight dynamics in the vineyard during the whole season. He used individuals harvested from
the vineyard to get the population dynamics. The advantage of his data is one knows the initial population size and its
evolution in time unlike when using sexual and food traps that do not give these information, though they are very helpful
for model simulations.

The data are numbers of emerging male and female moths per day of the first and second insect generations, and also
the daily mean temperature (Fig. 1). Individuals were harvested at the pupa stage during winter for the first generation and
during spring for the second one. These two samples are a representation of the natural population taken at two different
times, meaning that the individuals of the second generation are not the descendants of the first one. The first dynamics
(first peak), obtained with 660 winter pupa, starts April 5th and ends May 5th. The second one starts June 18th with 600
spring pupa harvested between June 6th and 22th and ends July 12th. The temperature is increasing during the experiment
except at the end of May. These two samples are followed in a cage situated in a vineyard of the Southeast of France,
consequently individuals are not affected by predators.

Unfortunately, these data do not give information about daily mean hygrometry, nor about grape variety of the vineyard.
We then neglect these two factors in the simulations, and assume that the temperature is the only important factor to
explain the data.

Growth functions vk(E(t),a), for k = e, l, f ,m
In 1998, Brière measured mean development time of eggs, 5 larval stages and pupa at constant temperature [4]. The

growth rate is defined as the reciprocal of the mean development time. Brière then deduced from his data the growth
rate of eggs, larval stages and pupa at constant climatic conditions. To describe his data he tested several mathematical
equations [4] and concluded that Logan and his equations [4,8] are the best fit. As the number of unknown parameters is
smaller in Brière’s equation, we use it to define our functions ve and vl in the form

vk(E(t),a
) = bk T

(
T − T k)√(

T k − T
)
,
0 l



B. Ainseba et al. / J. Math. Anal. Appl. 382 (2011) 34–46 43
Fig. 2. Egg mortality function with respect to the age variable.

where T k
0 and T k

l are the temperatures of low and maximal development for the k-developmental stage and bk empirical
constants, for k = e, l.

The mean development time of adults was not measured with respect to the temperature as done for eggs and larvae;
Therefore, we define the adult growth function as constant and we set it equal to 1.

Mortality functions mk(E(t),a), for k equals to e, f ,m
The mortality of a population is actually the combination of a natural mortality and a mortality caused by the en-

vironment. In field conditions, it is very difficult to measure the mortality rate of a population. For EGVM, the morality
rates are measured in laboratory conditions with respect to some values of temperature [15], of humidity [1,15] and grape
variety [10]. Globally, the mortality is very low for each developmental stage, around 2%, even for extreme negative or
positive temperatures, without considering predators, parasitoids and dryness. We then assume that the mortality is, for
each stage, an increasing function of age. Fig. 2 represents the egg mortality function where the maximum age is set to
10 days.

Larval mortality function ml(Pl(t), E(t),a)

The larval mortality function is slightly different than the one defined above because it models the competition between
larvae. We assume that the larval mortality can reach the value of 50% as soon as there are more than 10 larvae per bunch.
Considering that the average number of bunches per parcel is around 6000 in French wine agriculture, this hypothesis
implies that the larval population size cannot reach the number of more than 60 000 individuals. The function is then
defined by the following equation,

ml(Pl(t), E(t),a
) = c

Ll − a
e

Pl(t)
60 000 −1,

where c is a positive constant.

Transition functions βk(E(t),a), for k = e, l
According to our observations of the hatching and adult flight dynamics at constant temperature in the range [20 ◦C,

22 ◦C], the mean development time of an egg cohort is 6 days with a variation of around 3 days [1] whereas it is of 25 days
with a variation of 20 days for a larval cohort [16]. The distribution around the mean is uniform and symmetric. We then
define the functions βe(E(t),a) and βl(E(t),a) as Gaussian functions in the age variable for all environmental conditions
with the means and variances set to 7 and 0.55, 26 and 0.35 respectively.

Birth function β f (P f (t), Pm(t), E(t),a)

Our hypotheses are based on Torres-Vila’s results summarized in the paper [21]. He measures the dependence of the
egg laying dynamics of females with respect to their age and their diet. The dynamics, for females growing on immature
bunches, is represented by a decreasing curve with maximum value 30 and reaching the minimum value at around 6 days.
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Fig. 3. Female (solid) and male (dash dot) flight dynamics from April to September 1983. These curves are the results of LBM.

He also proves that the fecundity rate is density-dependent and decreases as soon as the female population size is 8 time
bigger than the male population size. According to these results, we define the birth function as follows

β f (P f (t), Pm(t), E(t),a
) =

{−5a + 30 if P f (t) � 8Pm(t),

(−5a + 30)e−(P f (t)−8Pm(t)) if P f (t) > 8Pm(t).

3.2. Method

The model (2.1)–(2.3) is solved by a numerical method based on a Finite Volume scheme presented in the paper [17].
This method was chosen for its stability properties and its convergence, which is satisfactory for our study.

The model is initialized from the boundary conditions (2.2) of the adult stage with the first generation dynamics of
Chavent’s data. The initial conditions (2.3) are set to 0. The objective is then to simulate the second generation dynamics
with LBM and to compare the model’s predictions with Chavent’s data. The comparison will be focused on the date of the
first occurrence of moths and on the length of the adult flight dynamics. Chavent’s data represents only a sample of the
population dynamics, making a comparison with the simulated population size meaningless.

In the following simulations the maximal ages for each stage are chosen as follows:

Le = 10; Ll = 35; L f = Lm = 15,

and are given in days. The sex-ratio is 45/55 (% female/% male) that is consistent with the results of the papers [19,20]. The
constants bk , T k

0 and T k
l for k = e, l used in the growth functions, and c used in the mortality functions are

be = 1.710−4, bl = 3.510−5, T e
0 = 10.55, T l

0 = 12.2, T e
l = 34, T l

l = 34.2, c = 0.05.

3.3. Results and discussion

Fig. 3 shows the LBM simulations of the first and second generations of female (solid line) and male (dash dot line)
populations.

The emerging moths period of the second generation predicted by LBM coincides with Chavent’s data and occurs two
months after the first generation which is consistent with the insect biology. The decline of emerging moths number at
the end of June in Chavent’s data is also predicted by our model. However, the estimation of the beginning and the end
of this period are, respectively, 2 weeks earlier and 2 weeks later than those measured by Chavent. The number of adults
estimated by LBM for the second insect generation varies between a maximum of 300 to a minimum of 150 individuals
for the male population and, 250 to 150 individuals for the female population. The population size is then 10 to 30 times
bigger than the size of the sample followed by Chavent explaining partly the variability of the emerging dates and then a
longer predictive dynamics.

In this simple example of model application, we use parameters (mortality, birth, growth and transition functions) de-
fined from experimental results obtained under constant environmental conditions whereas LBM is really applied to predict
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EGVM dynamics in a vineyard where the temperature fluctuates. Also, we neglect the environmental factors such as air
hygrometry and grape variety in LBM simulations because of a lack of data. By considering them, the model could give a
best estimate of the duration of the second adult flight dynamics (Fig. 3). To improve these simulations, we then propose to
estimate all LBM parameters from experimental data. Laboratory data could be used as a first step. Indeed, in such experi-
mental conditions, several factors are constant in time and biological characteristics neglected, leading, from a mathematical
point of view, to make some simplifications in the model. The next steps are to define the parameters with mathematical
equations considering all environmental factors and then validate them by running simulations as we did in this section.

4. Conclusion

Nowadays, the tools used to predict the appearance of the European Grapevine Moth (EGVM) in a vineyard are monitor-
ing traps (pheromone for moths or food traps for females), and visual counting of eggs and larvae at each generation. These
tools help wine makers to know whether or not moths exist at a given moment. From this information, they deduce the egg
laying and hatching periods. It is easy to understand that such techniques have several drawbacks. Indeed, wine makers do
not have information on the real moth population size and on the age of the moths. Moreover, these tools do not highlight
the appearance of eggs and larvae in the vineyard. Therefore, a mathematical model could be a helpful tool to generate an
approximation of these missing information. Its main objective will be to predict in time and stage the pest population size
within a given vineyard.

The Lobesia botrana model (LBM) developed in this paper structures the population into four stages which are egg, larval,
female and male adults. It models also the physiological age of individuals for each stages. Such a model structure leads to
a better understanding not only of the population size fluctuations but also of the egg laying behavior or the dynamic of
vine damages by young larvae, for example.

Creating a realistic model is only possible if we consider the main environmental factors. Our model consider three of
them namely the temperature, the air hygrometry and the grape variety. Previous works focused more on the effect of the
temperature, neglecting the two other factors. However, recent papers put forward evidence that they modify several life
history traits like for example the population fitness, the growth speed of larvae, the choice of the mate, the fecundity and
egg survival [9–13,19,20]. All this contributes to growth population fluctuations.

To accurately predict the “population peaks” of each stage, it is natural to consider physiological characteristics of this
pest in the model. As a consequence, we use partial differential equations to describe the aging of our sub-populations.
Also, the growth and the transition functions from one stage to the next are age-dependent in order to increase growth
variations inside a cohort. To sum up, the model proposed in this paper is, for two reasons, unique. First, it describes the
EGVM population dynamics with a hyperbolic system and, secondly, the model takes into account a great deal of biological
information.

LBM offers a very good description of EGVM’s life cycle. However to model more sub-populations such as black egg stage
or the 5 larval stages and be applied to other insect populations with similar life cycles, our model could be generalized by
replacing the larval equation of the system (2.1) by⎧⎪⎨

⎪⎩
∂

∂t
uk(t,a) + ∂

∂a

[
vk(E(t),a

)
uk(t,a)

] = −mk(Pk(t), E(t),a
)
uk(t,a) − βk(E(t),a

)
uk(t,a),

∂

∂t
uk+1(t,a) + ∂

∂a

[
vk+1(E(t),a

)
uk+1(t,a)

] = −mk+1(Pk+1(t), E(t),a
)
uk+1(t,a) − βk+1(E(t),a

)
uk+1(t,a),

where k refers to the stage after the newborn one. The boundary conditions of the larval and adult stages of (2.2) are then
given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vk(E(t),0
)
uk(t,0) =

Le∫
0

βe(E(t), s
)
ue(t, s)ds,

vk+1(E(t),0
)
uk+1(t,0) =

Lk∫
0

βk(E(t), s
)
uk(t, s)ds,

. . . ,

v f (E(t),0
)
u f (t,0) =

Ll∫
0

τβk+n(E(t), s
)
uk+n(t, s)ds,

vm(
E(t),0

)
um(t,0) =

Ll∫
(1 − τ )βk+n(E(t), s

)
uk+n(t, s)ds,
0
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where n is the number of stages added to structure the population and k + n refers to the stage just before the adult one.
The initial conditions of the added equations are defined by⎧⎪⎨

⎪⎩
uk(0,a) = uk

0(a), a ∈ [
0, Lk],

. . . ,

uk+n(0,a) = uk+n
0 (a), a ∈ [

0, Lk+n].
The proof of existence and uniqueness of solution for this general model is given in this paper for k = l and n = 0 and, but
it holds just the same for k �= l and n > 0.

In the last section, we compare the model predictions with field experimental data. The simulations are not identical
to the data because of the lack of information about the data but also about the relation between insect biology and
our modeled environmental factors. We think we should first estimate model parameters with data obtained in a control
environment to accurately define and understand this relation, and then validate the model with such field data.
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