

Strategies for cultivar deployment in agricultural landscapes: confronting the points of view of breeders and farmers

> Frédéric Fabre & Marta Zaffaroni INRAE Santé et Agroécologie du Vignoble frederic.fabre@inrae.fr, marta.zaffaroni@inrae.fr

INRAE Santé et Agroécologie du Vignoble

Bordeaux

Save santé et agroécologie du vignoble

INRAe

15 min introduction

1h30 serious game (30 min game + 15 min feedback for each round):
 > Round 1: optimising landscape organisation

➢ Round 2: optimising deployment strategies and resistance sources

Rusts (*Puccinia* spp.) of cereal crops

Cucumber mosaic virus on pepper

INRAe

Resistance is useful but can be overcome

Plant resistance

complete or partial reduction of pathogen infection, growth and spread, hence disease severity

INRAØ

> Evolutionary forces

INRAe

> A high diversity in wild plant-pathogen interactions

Rust infection of wild flax *Linum* marginale, caused by Melampsora lini

INRAe

> What is the best strategy to deploy plant resistance?

> What is the best strategy to deploy plant resistance?

Adapted from Rimbaud L., Fabre F., Papaïx J., Moury B., Lannou C., Barrett L. and Thrall P. (2021). Models of plant resistance deployment. Annual Review of Phytopathology 59:125-152

15-05-2024 / TOP-AGRI-NETWORK / F. Fabre & M. Zaffaroni

> A web interface destined to broad audience

INRA

> A web interface destined to broad audience

https://shiny.biosp.inrae.fr/app_direct/landsepi/

	Landsepi : Landscape Ep	pidemiology and Evolution
	А	bout
Input		Output
Default St	trategies aic ▼	Simulated landscape
Landscape Croptypes and Cultivars		
Landscape structure (field boundaries)	Spatial aggregation of croptypes	
	Dubined	
C0 proportion C1 proportion 0.33 • 0.33 •	C2 proportion Rotation period 0.34 (years)	
	0	Susceptible crop Resistant crop 1 Resistant crop 2
Simulation duration Time steps per (years) (days)	er year Seed (for random number generator)	
30 120	€ 12345	
	Generate t	he landscape
	Run simulation	Stop simulation
	🛓 Expor	t simulation

INRAe

> Serious game: Groups

INRA

Landsepi : Landscape Epidemiology and Evolution

Run simulation Stop simulation

La Download simulation parameters

Z Advanced Mode On/Off

	Input	
	Default Strategies	
	Mosaic 🔻	
Landscape Cultivars and Genes	Pathogen Treatment	
Eandscape Contivars and Genes	ranogen neament	

Croptypes

General assembly of

Beauce, the place to wheat

croptypeID	croptypeName	÷	Susceptible 🔶	Resistant1 🝦	Resistant2	Proportions de	ete 🔶
(Susceptible crop		1	0	0	0.33	
1	Resistant crop 1		0	1	0	0.33	
2	Resistant crop 2		0	0	1	0.34	
Add line							
Rotation perio	d (years)	0	<u>1st configuration</u> : c 2nd configuration :	croptypes 0 (Susce) croptypes 0 (Susce	otible crop) and 1 ptible crop) and 2	(Resistant crop 1) 2 (Resistant crop 2)	
Simulation du	ration (years)		Time steps per ye	ear (days)	Seed (RNC	3)	
Simulation du	ration (years)	0	Time steps per ye	ear (days)	Seed (RNC	3)	\$
Simulation du	ration (years)	\$	Time steps per ye	ear (days) ₿	Seed (RNC	3)	\$

Round #1

Optimising landscape organisation

Farmers wish to grow 1/3-1/3-1/3 of *Delicate* (susceptible cultivar), *ToughTough* (resistant cultivar with resistance gene 'Lr13') and *Wheateatix* (resistant cultivar with resistance gene 'Lr34') **in a mosaic** during 10 years (120 days/year)

From your perspective, how should they organise the fields in terms of:

- Field boundaries (landscape structure)?
- Spatial aggregation of the 3 cultivars?

> Cereal growers

Your goal is to control epidemics (that is to minimize the proportion of infected plants) on the susceptible Delicate, because it is your main cash crop. For this, you must find an appropriate deployment strategy for the resistant **ToughTough** and **Wheateatix** while maintaining sufficient fields with **Delicate** in the landscape. How does this objective translate into the model outputs? Which of the following is favourable from your point of view?

Minimizing the proportion of diseased <u>susceptible</u> hosts (for example the average trend along the 10 simulated years, or the value at year 10)

This is the best option for cereal growers, because it minimizes the proportion of diseased susceptible host.

INRAØ

> Cereal breeders

Your goal is to avoid a breakdown of resistance genes 'Lr13' and 'Lr34', because it would lead to dramatic epidemics and a loss of at least 10 years of heavy investments in research & development. Thus, *ToughTough* and *Wheateatix* **must be as durable as possible**, that is, the deployment strategy must avoid or at least delay the appearance of adapted pathogens.

How does this objective translate into the model outputs? Which of the following is favourable from your point of view?

Maximizing the number of years before resistance breakdown, that is the moment when the proportion of diseased <u>resistant</u> host starts increasing.

Disease severity averaged on whole cropping seasons

This is the best option for cereal breeders, because it maximize the number of years before resistance breakdown

Strategies for cultivar deployment in agricultural landscapes 15-05-2024 / TOP-AGRI-NETWORK / F. Fabre & M. Zaffaroni

INRA

Landscape structure	Spatial aggregation of croptypes	Proportion of diseased <u>susceptible</u> hosts	Years before Years before resistance breakdown
Landscape 1	Highly fragmented		
Landscape 1	Balanced		
Landscape 1	Highly aggregated		
Landscape 2	Highly fragmented		
Landscape 2	Balanced		
Landscape 2	Highly aggregated	Running the <i>landsep</i>	<i>i</i> simulator
Landscape 3	Highly fragmented	landscape structure X aggreg	ation combinations
Landscape 3	Balanced		
Landscape 3	Highly aggregated		
Landscape 4	Highly fragmented		
Landscape 4	Balanced		
Landscape 4	Highly aggregated		
Landscape 5	Highly fragmented		
Landscape 5	Balanced		
Landscape 5	Highly aggregated		

Landscape structure	Spatial aggregation of croptypes	Proportion of diseased <u>susceptible</u> hosts	Years before Years before resistance breakdown
Landscape 1	Highly fragmented	40%	10 +
Landscape 1	Balanced	50%	3
Landscape 1	Highly aggregated	55%	10 +
Landscape 2	Highly fragmented	45%	10 +
Landscape 2	Balanced	50%	3
Landscape 2	Highly aggregated	55%	10 +
Landscape 3	Highly fragmented	45%	2
Landscape 3	Balanced	55%	3
Landscape 3	Highly aggregated	55%	10 +
Landscape 4	Highly fragmented	45%	1
Landscape 4	Balanced	50%	2
Landscape 4	Highly aggregated	50%	1
Landscape 5	Highly fragmented	45%	5
Landscape 5	Balanced	55%	2
Landscape 5	Highly aggregated	50%	10 +

> Debriefing

Round #1

Optimising landscape organisation

What is the effect of landscape boundaries?

No detectable effect of landscape boundaries

What is the effect of spatial aggregation?

The proportion of diseased susceptible hosts is generally minimize for highly fragmented landscape, while the number of years before resistance breakdown is generally maximize for highly aggregated landscapes Cereal breeders

Blé Blé bleu. Blé rouge. Blé du Blé hátif.

INRA

Strategies for cultivar deployment in agricultural landscapes 15-05-2024 / TOP-AGRI-NETWORK / F. Fabre & M. Zaffaroni

Cereal

growers

General assembly of

Mosaics

Beauce, the place to wheat

Round #2

Growers: Optimising deployment strategies

You have heard that 2 completely efficient major resistance genes have just been developed by breeders. You want to use them during 10 years (120 days/year) in a system composed of a susceptible (33%, weak aggregation) and 1 or 2 resistant cultivars (with the same proportion).

Among mosaics, mixtures, rotations and pyramiding:

- What is the most efficient strategy in the short term? \geq
- What is the most durable strategy in the long term?

Pyramids

Susceptible crop Resistant crop 1 Resistant crop 2

Rotations in time

Cultivar mixtures

Susceptible crop Mixture (RC1 + RC2)

Susceptible crop Pyramiding

Susceptible crop Resistant crop 2

General assembly of

Beauce, the place to wheat

Resistant crop 1

<u>Round #2</u>

Breeders: Optimising resistance sources

The scientific literature mentions several possible resistance sources, but they differ in efficiency and adaptation cost for the pathogen. You would like to know their potential in simple mosaics of S + R (50%-50%, weak aggregation) grown for 10 years (120 days/year).

what is the effect of :

- Efficiency of the resistance gene
- Fitness cost of pathogen adaptation
- Note : <u>relative advantage = 0</u>

on resistance efficiency and durability?

percentage of reduction of pathogen targeted aggressiveness component, the infection rate here

fitness penalty paid by a pathogen genotype fully adapted to the resistance gene on any host

ereal growers		Short term	Long term
Landscape structure	Resistant deployment strategy	Proportion of diseased <u>susceptible</u> hosts	Years before resistance breakdown
Landscape 1	Mosaic		
Landscape 1	Mixture		
Landscape 1	Pyramiding		
Landscape 1	Rotation		
Landscape 2	Mosaic		
Landscape 2	Mixture		
Landscape 2	Pyramiding		
Landscape 2	Rotation	Running the <i>landsepi</i> simulator	
Landscape 3	Mosaic	to get the resulands cape structure X	lits for all the
Landscape 3	Mixture	(balanced as	ggregation)
Landscape 3	Pyramiding		
Landscape 3	Rotation		
Landscape 4	Mosaic		
Landscape 4	Mixture		
Landscape 4	Pyramiding		
Landscape 4	Rotation		
Landscape 5	Mosaic		
Landscape 5	Mixture		
Landscape 5	Pyramiding		
Landscape 5	Rotation		

Cereal growers		<u>Short term</u>	Long term
Landscape structure	Resistant deployment strategy	Proportion of diseased <u>susceptible</u> hosts	Years before resistance breakdown
Landscape 1	Mosaic	52%	6
Landscape 1	Mixture	52%	10+
Landscape 1	Pyramiding	50%	7
Landscape 1	Rotation	32%	7
Landscape 2	Mosaic	46%	2
Landscape 2	Mixture	55%	10+
Landscape 2	Pyramiding	46%	9
Landscape 2	Rotation	55%	5
Landscape 3	Mosaic	48%	3
Landscape 3	Mixture	43%	3
Landscape 3	Pyramiding	45%	10+
Landscape 3	Rotation	50%	10+
Landscape 4	Mosaic	41%	2
Landscape 4	Mixture	45%	10+
Landscape 4	Pyramiding	48%	10+
Landscape 4	Rotation	43%	10+
Landscape 5	Mosaic	49%	8
Landscape 5	Mixture	52%	10+
Landscape 5	Pyramiding	53%	10+
Landscape 5	Rotation	46%	10+

15-05-2024 / TOP-AGRI-NETWORK / F. Fabre & M. Zaffaroni

Cereal breeders >

0.1

0.1

Resistant1

Resistant2

2

2

0.1

0.1

2.5

2.5

0

0

Lr12	88%			
	00/0	25%	55%	1
Lr13	100%	25%		
Lr16	10%	75%		
Lr22	88%	50%		
Lr34	75%	25%	Running the landsep	r simulator
Lr35	88%	0%	genes (highly fragmente	d aggregation)
Lr37	50%	50%		
Lr46	10%	25%		

0

0

0

0

225

225

200

200

Î

Î

> Cereal breeders

Gene	Efficiency	Adaptation cost	Proportion of diseased hosts in the <u>whole landscape</u>	Years before resistance breakdown
Lr12	88%	25%	25%	1
Lr13	100%	25%	25%	10 +
Lr16	10%	75%	55%	1
Lr22	88%	50%	30%	1
Lr34	75%	25%	40%	1
Lr35	88%	0%	30%	1
Lr37	50%	50%	30%	1
Lr46	10%	25%	55%	1

> Debriefing

Round #2

Growers: Optimising deployment strategies

Among mosaics, mixtures, rotations and pyramiding of 2 major resistance genes:

What is the most efficient strategy in the short term?

Rotation

What is the most durable strategy in the long term?

Pyramiding

Breeders: Optimising resistance sources

Given that several resistance genes are available, what is the effect of :

- > gene efficiency
- fitness cost of pathogen adaptation

on resistance efficiency and durability?

Only a gene efficiency = 100% assured a durability 10 +, A high gene efficiency and adaptation cost assured a better resistant efficiency (better control of the disease)

INRAØ

Selected reviews for a good start on R durability

Annu. Rev. Phytopathol. 2002. 40:349-79 doi: 10.1146/annurev.phyto.40.120501.101443 Copyright (c) 2002 by Annual Reviews. All rights reserved

PATHOGEN POPULATION GENETICS, EVOLUTIONARY POTENTIAL, AND **DURABLE RESISTANCE**

Bruce A. McDonald and Celeste Linde

Playing on a Pathogen's Weakness: Using Evolution to Guide Sustainable Plant Disease Control Strategies

Jiasui Zhan,^{1,2,*} Peter H. Thrall,³ Julien Papaïx,^{4,5} Lianhui Xie,² and Jeremy J. Burdon³

¹Key Laboratory for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; email: jiasui.zhan@fafu.edu.cn

- ²Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; email: xielh@126.com ³CSIRO Agriculture Flagship, Canberra, ACT 2601, Australia; email: peter.thrall@csiro.au, jeremy.burdon@csiro.au
- ⁴INRA, Santé des Plantes et Environnement, UR 1290 BIOGER-CPP, 78850 Thiverval-Grignon, France; email: jpapaix@jouy.inra.fr ⁵INRA, Mathématiques et Informatiques Appliquées, UR 341 MIAJ, 78352 Jouy-en-Josas,
- France

ANNUAL Further Click here for quick links to Annual Reviews content online, includina: Other articles in this volume Top cited articles Top downloaded articles Our comprehensive search

Plant-Parasite Coevolution: Bridging the Gap between Genetics and Ecology

James K. M. Brown¹ and Aurélien Tellier²

¹Department of Disease and Stress Biology, John Innes Center, Colney, Norwich, NR4 7UH, United Kingdom; email: james.brown@bbsrc.ac.uk ²Section of Evolutionary Biology, Biocenter, University of Munich, 82152 Planegg-Martinsried, Germany; email: tellier@bio.lmu.de

Annu. Rev. Phytopathol. 2011. 49:345-67

The Annual Review of Phytopathology is online at phyto.annualreviews.org

Keywords

resistance, avirulence, effector, frequency-dependent selection, polymorphism, boom-and-bust cycle

Annu. Rev. Phytopathol. 2021. 59:125-52

First published as a Review in Advance on April 30, 2021

Annual Review of Phytopathology Models of Plant Resistance Deployment

Loup Rimbaud,^{1,2} Frédéric Fabre,³ Julien Papaïx,⁴ Benoît Moury,¹ Christian Lannou,⁵ Luke G. Barrett,² and Peter H. Thrall²

¹INRAE, Pathologie Végétale, 84140 Montfavet, France; email: loup.rimbaud@inrae.fr, benoit.moury@inrae.fr

- ²CSIRO Agriculture and Food, Canberra, ACT 2601, Australia; email: luke.barrett@csiro.au, peter.thrall@csiro.au
- ³INRAE, Bordeaux Sciences Agro, SAVE, 33882 Villenave d'Ornon, France; email: frederic.fabre@inrae.fr
- ⁴INRAE, BioSP, 84914 Avignon, France; email: julien.papaix@inrae.fr

Keywords

⁵INRAE, BIOGER, 78850 Thiverval-Grignon, France; email: christian.lannou@inrae.fr

adaptation, durability, evolution, host-microbe interaction, immunity,

Annu. Rev. Phytopathol. 2015. 53:19-43 First published online as a Review in Advance on

May 4, 2105

The Annual Review of Phytopathology is online at hyto annualreviews org

Keywords

ecological disease management, spatiotemporal resistance gene deployment, trade-offs, evolutionary plant pathology, multilayer disease forecasting

> Beyond « square fields in a square landscape »

- Cooperative listened by its members
- A player capable of driving forward actions on a regional scale
- The user association promoted by Elinor Ostrom

> Beyond square fields in a square landscape

What does winegrowers think about R cultivars? How researchers can dialogue with winegrowers for deploying R cultivars?

• Four ateliers with the cooperative cellar growing "Les vignerons des Buzet"

THE ECO-INNOVATIVE AGENC

What does winegrowers think about R cultivars? How researchers can dialogue with winegrowers for deploying R cultivars?

• Four ateliers with the cooperative cellar growing "Les vignerons des Buzet"

> Design of strategies

Facteur	Valeur	
Resistant cultivar	Polygenic (PY)	cultivar ResDur 1 (Rpv1-Rpv3.1)
		no limit
	Age > 30 years	max 5% / farmer
		max 20% / farmer
		no limit
Choice of fields planted	Age > 40 years	max 5% / farmer
with R cultivars		max 20% / farmer
	3%/year of the oldest	
	ZNT aquatic	treatment > 0
		treatment = 0
	ZNT neighbouring	treatment > 0
		treatment = 0

> Design of strategies...and Marta doing all the hard work !

Scenario 5: 3% of the oldest fields each year

Soon a popular science comic strip on the subject

INRAe

SPECIAL THANKS TO:

INRAE Pathologie Végétale

Benoît Moury Loup Rimbaud All the staff of the virology team and the experimental & microscopy facilities

CIRAD PHIM

Catherine Abadie Béranger Decouture

INRAE BioSP

Julien Papaïx Jean-François Rey

CSIRO Pete Thrall Luke Barrett INRAE SAVE Frédéric Fabre Marta Zaffaroni

Montpellier SupAgro Elsa Ballini

AgroParisTech Marianne Le Bail PhD fellow Elise Lepage

Master Students Jean-Loup Gaussen Pierre Mustin Clarisse Vincent