Plant hydraulics at the heart of plant, crops and ecosystem functions in the face of climate change

Contents

Summary 2

I. Introduction 2

II. Plant hydraulics: a framework for measuring drought impacts 2

III. Hydraulic properties and crop productivity under drought conditions 4

IV. Linkage between hydraulics-related plant traits and wildfire risk 6

V. Role of hydraulic traits on plant-herbivore insects-pathogens interactions 7

VI. Plant hydraulics as a hub for vegetation models 8

VII. Water-use and drought tolerance strategies in the global spectrum of plant functions 10

VIII. Conclusions and prospects 11

Acknowledgements 11

References 12
Summary

Plant hydraulics is crucial for assessing the plants’ capacity to extract and transport water from the soil up to their aerial organs. Along with their capacity to exchange water between plant compartments and regulate evaporation, hydraulic properties determine plant water relations, water status and susceptibility to pathogen attacks. Consequently, any variation in the hydraulic characteristics of plants is likely to significantly impact various mechanisms and processes related to plant growth, survival and production, as well as the risk of biotic attacks and forest fire behaviour. However, the integration of hydraulic traits into disciplines such as plant pathology, entomology, fire ecology or agriculture can be significantly improved. This review examines how plant hydraulics can provide new insights into our understanding of these processes, including modelling processes of vegetation dynamics, illuminating numerous perspectives for assessing the consequences of climate change on forest and agronomic systems, and addressing unanswered questions across multiple areas of knowledge.

I. Introduction

The field of plant hydraulics examines the capacity of plants to extract water from the soil and transport it up to the aerial organs through the transpiration stream. Moreover, it also considers water exchange between the plant apoplastic and symplastic compartments, determining plant water relations and water status. Variations in plant hydraulic properties, water relations and status (e.g. induced by changes in meteorological conditions or soil water availability) can directly affect key plant functions such as stomatal behaviour, photosynthetic capacity, biomass production and growth. Furthermore, these variations can influence other processes such as the development of plant diseases caused by pathogens, the sensitivity of forests to wildfires or the risk of drought-induced mortality (Fig. 1). As a result, plant hydraulics has garnered increasing attention from diverse scientific fields due to its critical role in addressing relevant questions, especially those related to ecosystem functioning in the face of global changes. The increase in the frequency and severity of drought events is causing irreversible damages to plant productivity and survival, which are further exacerbated by the impacts of pathogens or wildfires (Littell et al., 2016; McDowell et al., 2018, 2022). Thus, many of the mortality events reported world-wide have been related to low water availability and increased atmospheric temperatures (Peng et al., 2011; Hammond et al., 2022; Klein et al., 2022). Such conditions can therefore compromise the contributions of ecosystem services to humankind. Similarly, the intensifying drought conditions are already causing substantial declines in crop yield in most agricultural regions world-wide (Lesk et al., 2016), with important implications for livelihood and food security. It is therefore necessary to identify the physiological traits that explain such variation in plant survival and yield for the maintenance and conservation of our forests and improving crop management.

During the last decades, plant hydraulics has contributed relevant knowledge and tools for understanding biological and ecological processes, such as the susceptibility of forests to fire (Midgley et al., 2011; Ruffault et al., 2022), plant interactions with pathogens and herbivorous insects (Yadeta & Thomma, 2013; Bortolami et al., 2019), and the processes controlling crops and forest productivity and resilience to drought (Flexas et al., 2018; Klein et al., 2022; Morcillo et al., 2022; Fig. 1). Given these pioneering attempts, there is now an opportunity to connect the knowledge generated in plant hydraulics and other disciplines in order to address relevant physiological and ecological questions at large scales (e.g. better prediction of mortality, fire risk, ecosystem functioning or crop production). Significant advances, however, have been made in understanding processes and mechanisms associated with water transport, including cavitation formation and spreading (Tyree & Sperry, 1989; Torres-Ruiz et al., 2016a); hydraulic efficiency and safety within and across species (Choat et al., 2012; Lobo et al., 2018); the role of hydraulic dysfunction in drought-induced mortality (Adams et al., 2017; Mantova et al., 2021, 2022; McDowell et al., 2022); water transport in and out of fruit (Morandi et al., 2007; Torres-Ruiz et al., 2016b); the development of mechanistic models for predicting the consequences of drought-induced hydraulic failure on plant performance (Sperry & Love, 2015; Cochard et al., 2021; Ruffault et al., 2022); and the risk of wildfires (Ruffault et al., 2023). As a result, plant hydraulics provide, at present, a comprehensive framework that represents various aspects of terrestrial plant and ecosystem functioning, including (1) carbon sequestration and productivity of crops and forest ecosystems, as photosynthesis is tightly coordinated with hydraulic functions (e.g. Reichstein et al., 2014); (2) the predictions of plant water status encompassing all components of drought stress using well-established biophysical equations based on simple diffusion laws (e.g. Cochard et al., 2021; De Swaef et al., 2022); and (3) the predictions of plant mortality, demography and the susceptibility to disturbance regimes such as wildfire or pathogen attacks linked to drought (e.g. Gely et al., 2020; Ruffault et al., 2023).

Without attempting to be exhaustive, the goal of this review is to highlight how plant hydraulics can provide relevant insights to other disciplines such as crop sciences, fire ecology, plant pathology and ecology, providing a broad framework highlighting how it can advance unanswered questions and draw future research directions of these fields.

II. Plant hydraulics: a framework for measuring drought impacts

Plant responses to drought are characterized by a sequence of water stress limits for various plant physiological functions, which are linked to hydraulic traits (Bartlett et al., 2016; Blackman...
et al., 2023). These hydraulic traits play an important role in shaping critical aspects of plant performance, including growth, photosynthesis, turgor maintenance and overall resilience in the face of drought-induced conditions (Fig. 2). Thus, as soil water availability decreases or atmospheric vapour pressure deficit (VPD) increases, plants commonly reduce stomatal opening to mitigate water stress and hydraulic impairment. However, this adaptive response is associated with the trade-off of limiting photosynthesis and transpiration (Flexas & Medrano, 2002; Martin-SrPaul et al., 2017). Drought leads to a decrease in cell turgor pressure due to declining plant water potential, causing plant growth to halt when it reaches values below the minimum pressure required for cell enlargement (Lockhart, 1965). Despite this, only few studies to date have attempted to determine or model the water potential threshold for plant growth (reviewed in Cabon et al., 2020). As for growth, hydraulic limits can be defined for plant gas exchange. In this respect, the turgor loss point (Ψtlp) appears as a sound water potential limit for characterizing stomatal closure, considering that stomata are completely closed when leaf turgor is equal to zero (Brodribb et al., 2003). However, it should be noted that stomatal closure alone may not be sufficient for assessing the water stress impact on carbon assimilation and economy because photosynthesis is significantly constrained before complete stomatal closure (Fig. 2). The water potential at net zero carbon assimilation (ΨA_n = 0) is therefore crucial for evaluating the effect of drought on plant growth, productivity or carbon sequestration, requiring to consider the roles of the mesophyll conductance to CO₂, the Rubisco carboxylation rate and the chlorophyll electron transport...
Xylem resistance to cavitation is conventionally assessed by determining the tension inducing 50% loss of hydraulic conductance (P_{50}), a trait typically well conserved within species (Lamy et al., 2014; Torres-Ruiz et al., 2019), even if acclimation has also been observed for some species across their distribution range or among varieties (Trueba et al., 2017; Stojnić et al., 2018; Dayer et al., 2020). P_{50} represents the point at which the sensitivity of plant hydraulic conductance to water potential is maximum. P_{50} also corresponds to the lethal percentages of loss of conductivity (PLC) for conifers (Brodribb & Cochard, 2009) but not for angiosperms in which death occurs at even more negative water potentials (PLC c. 88%, Urli et al., 2013). However, the small number of studies in which these lethal water potential limits were observed, and recent research showing how plants are actually able to recover from drought even when surpassing these values (Hammond et al., 2019; Mantova et al., 2021) questions their use as physiological thresholds for plant mortality.

In summary, plant hydraulic characterization can undoubtedly improve our predictive power for quantifying the impacts of drought and warming on vegetation gas exchange, growth, production and survival. Such information will be highly relevant to assess future species’ bioclimatic and growing boundaries, and design species-based conservation and management strategies to alleviate the impact of droughts on natural and managed systems under a changing climate.

III. Hydraulic properties and crop productivity under drought conditions

Significant drought-induced declines in crop production have been witnessed world-wide in recent decades (Howitt et al., 2015; Lesk et al., 2016; Schaubberger et al., 2017), prompting crop science researchers to develop cultivars to maintain crop yield under increasing drier conditions. To date, the development of drought-tolerant cultivars/varieties has largely relied on yield potential, on the selection of morpho-anatomical traits or on identifying hormones and proteins that have broad-range effects (De Micco & Aronne, 2012; Fábregas & Fernie, 2019) but are not fit to context-specific future climates. Yet, an important aspect for increasing drought tolerance in crops is to identify mechanistic traits that preserve the integrity of the hydraulic pathway to maintain productivity and yield under drought conditions.

Plant growth and yield depend not only on photosynthetic capacity but also on the conjuction of several factors that allow the enhancement of the photosynthesis rate to be translated into yield, such as higher hydraulic capacities, sink–source balance and transport of photoassimilates, and the availability of nutrients and environmental conditions (Lawlor, 1995; Araus et al., 2021). The increase in photosynthetic capacity requires the concurrent enhancement of an efficient water transport system (i.e. hydraulic efficiency; Tyree & Sperry, 1989; Brodribb, 2009) and the preservation of its hydraulic integrity (i.e. hydraulic safety), particularly under drought conditions. These interconnected traits play a key role and must progress in parallel to ensure optimal adaptation to drought conditions while maximizing photosynthetic performance. Thus, it has been reported how higher vein...
densities enhance not only photosynthetic gas exchange rates but also stomatal conductance and tolerance to drought-induced disruption of the hydraulic system (Sack & Scoffoni, 2013). However, there is only a weak trade-off between xylem efficiency and xylem safety such that very resistant species to cavitation can show a wide range of hydraulic conductance values (Gleason et al., 2016). An efficient coordination of plant hydraulics and photosynthesis is therefore essential for the synchronized regulation of water loss and carbon dioxide uptake in plants through the stomata. This coordination has recently been evidenced in tomato mutants (Andrade et al., 2022), where a reduction in diameter and number of xylem vessels resulting in lower hydraulic conductivity was associated with a 50% and 25% reduction in stomatal conductance and net photosynthesis, respectively.

Annual crop plants are, in general, relatively vulnerable to embolism, with Spearman’s rank correlation values (i.e. the water potential used as a proxy for the onset of xylem embolism) varying between −1 and −4 MPa, such as in wheat (−1.7 MPa, Corso et al., 2020), sunflower (−2.3 MPa, Ahmad et al., 2018) or maize (−1.6 MPa, Cochard, 2002). Within this range of water potentials, the relationship between complete stomatal closure (P_{close}) and P_{12} is close to the 1 : 1 line (Fig. 3a; Martin-StPaul et al., 2017), which means that there is little to no stomatal safety margin (SSM; i.e. P_{close} - P_{12}) for these species. These narrow SSMs allow annual crops to maintain gas exchange up to almost the onset of cavitation under drought conditions. Similar results have been observed in perennial woody crops, like apple trees (Beikircher et al., 2013), for which varieties with a higher resistance to cavitation are able to maintain their stomata open for a wider range of soil water availability. Therefore, if the objective is to ensure crop production and the sustainability of food supply under drought, we need to seek crop species or cultivars with (1) relatively high resistance to embolism and (2) relatively narrow safety margins to maintain gas exchange and maximize the photosynthetic activity even when soil water content starts to be limited (Fig. 3b). However, if our aim is to reduce the risk of drought-induced mortality, it is not only sufficient to identify varieties with higher resistance to embolism and wide safety margins, but we will also have to take into account other physiological traits. This is the case of residual conductance, stomatal closure or capacitance since, as a whole, they will determine the rate of residual water loss and, therefore, the time in which the plant will reach levels of water potential that could start to be detrimental or even fatal. Therefore, when assessing drought tolerance, we cannot focus on one or two traits, but on all those traits (i.e. syndrome of traits) that together will determine the behaviour and response of the plant under drought conditions (Dayer et al., 2022). However, pioneering studies have already shown that this is not an easy task (Tardieu, 2012) since the traits interaction can result in a range of phenotypes. This makes process-based modelling a useful tool for linking the crop’s hydraulic properties to plant performance and response to drought (e.g. Wang et al., 2020).

The hydraulic characteristics of the fruits, which is the final target in fruit tree orchards, have not attracted so much interest as stem or leaf hydraulics. In fruits, both xylem (inflows) and phloem (outflow) fluxes play a major role in their growth rate depending on their developmental stage (Matthews & Shackell, 2005; Clearwater et al., 2012), the irrigation regime (Torres-Ruiz et al., 2016b), irradiance (Boini et al., 2019) or rootstock-scion combinations (Gerbi et al., 2022; Narandžić & Ljubojević, 2022). Understanding the growth strategies of the fruits according to their hydraulic characteristics (i.e. inflows and outflows) can, therefore, help growers optimize their resource management for more sustainable production and higher fruit quality.
Apart from the increasing water scarcity observed in different geographical areas due to climate change, the growing interest in crop hydraulics stems from the recognition that understanding the hydraulic mechanisms responsible for drought resistance in crop plants is important for the development of productive and drought-resistant varieties. This is especially important since improving some morpho-anatomical or physiological traits that could improve drought resistance may not always result in corresponding improvements to hydraulic traits (e.g. Lamarque et al., 2020). Thus, multifaceted approaches are required to develop crop varieties with optimal trait combinations conferring increased hydraulic safety, efficient hydraulic conductance, sustained carbon assimilation and high yield. Now, that hydraulic traits can be easily quantified in crops; it is also possible to integrate this information into existing hydraulic models to predict crop performance under various climate warming scenario and identify traits that can be leveraged to adapt agriculture to climate change (Cochar et al., 2021; Dayer et al., 2022).

Therefore, considering the actual and predicted climate change scenario, identifying or creating crop varieties with an optimal combination of hydraulic safety, efficiency and photosynthetic traits is crucial to ensure crop production under the expected warmer and drier conditions for many areas in the world.

IV. Linkage between hydraulics-related plant traits and wildfire risk

Wildfire is one of the most important natural disturbances affecting ecosystems world-wide (Bowman et al., 2020). As climate warming intensifies, vegetation gets drier (lower moisture content) for longer periods of time (Clarke et al., 2022), thus lengthening the fire season and potentially increasing the frequency of high-intensity fires (Barbero et al., 2015; Dowdy et al., 2019; Ruffault et al., 2020). Plant–fire interactions depend on many physiological mechanisms occurring at different temporal and spatial scales (Resco De Dios, 2020). On the one hand, the interplay between biomass production (or fuel accumulation and structure) and its moisture content affects wildfires, at scales ranging from biogeographical patterns of burned area (Boer et al., 2021) to landscape patterns of fire spread (Nelson, 2001). On the other hand, fire effects on ecosystems depend on interactions between fire intensity and plant’s resistance and resilience to fire (Karavani et al., 2018).

Live fuel moisture content (LFMC; i.e. the ratio of water mass to dry mass of twigs and leaves within the vegetation) is considered to be one of the most relevant drivers of forest fire behaviour (Nolan et al., 2016; Pimont et al., 2019; Rao et al., 2022). The sensitivity of LFMC to drought depends on plant physiological, structural and hydraulics traits, which differ across species and can vary widely over space and time (Jolly & Johnson, 2018; Ruffault et al., 2018, 2023). Thus, under intense drought conditions, some species can reduce significantly the water flow to the leaves due to a xylem vulnerability segmentation between the leaves and the stems that makes leaf xylem cavitate at higher water potential (i.e. less resistance to cavitation) than stems (Charrier et al., 2016; Levionnois et al., 2020). Apart from exacerbating the dehydration of the leaves, this leaf hydraulic disconnection can trigger leaf senescence and drop (Tyree et al., 1993; Scholz et al., 2014) that will make LFMC to decrease. The same applies when there is significant hydraulic resistance segmentation between the leaves and the stems, for example a high resistance to water flow at the petiole level, which makes the water potential and water content to decay more rapidly in the leaves than in the stems (Tsuda & Tyree, 1997). Yet, despite a growing number of plant hydraulics models (Cochar et al., 2021; Li et al., 2021; Ruffault et al., 2022), attempts to simulate LFMC considering plant hydraulic properties are still scarce (but see Ma et al., 2021; Balaguero-Romano et al., 2022). Recent studies have shown the major role of physiological traits (vulnerability to cavitation, hydraulic segmentation and transpiration regulation) on both leaf and canopy fuel moisture content (Ruffault et al., 2023), but more research is needed to scale up predictions from the leaf or canopy level to the stand or landscape levels. It is also necessary to achieve a better integration between short-term physiological LFMC models (Balaguero-Romano et al., 2022; Ruffault et al., 2023) and microclimatic variation driven by the fire-plume so that this effect can be added to dynamical fire behaviour modelling (Dickman et al., 2023).

Fire effects on plants are tightly linked both to the type of fire and its behaviour as well as to the plant regeneration mode. Thus, crown fires, canopy scorch or consumption by the fire are the main triggers for the mortality of juveniles (Hull Sieg et al., 2006), although there are still some uncertainties about the critical fraction of crown mortality necessary for death (Resco De Dios et al., 2020). Individuals that initially survive fire may succumb in the months or years following the disturbance when the cambium is charred and the tree girdled, due to fire-induced hydraulic dysfunction (Ducrey et al., 1996; Kavanagh et al., 2010; Michaletz et al., 2012). Different mechanisms involving xylem hydraulics have been proposed to potentially explain postfire survival (Michaletz et al., 2012; West et al., 2016; Bär et al., 2019). However, recent studies indicate that vascular cambium is more sensitive to high temperatures than the xylem, making phloem charring a likely candidate to explain postfire survival (Salladay & Pittermann, 2023). This observation is in accordance with the forestry literature, which considers bark thickness (along with canopy fuel moisture content) as an indicator of postfire mortality (Resco De Dios, 2020). For resprouting trees, however, fire-induced mortality is more difficult to characterize. It was traditionally considered that stored reserves played a major role for postfire recovery, but recent findings challenge this view and indicate a major effect of plant hydraulics-related processes (Nolan et al., 2021). In this sense, it has been shown how oak trees are unable to resprout if a drought before the disturbance causes a loss of more than 50% in root hydraulic conductance, highlighting the critical role of root hydraulic conductance in the resprouting ability of trees (Resco De Dios et al., 2020).

Improving postfire management requires therefore a better understanding of the mechanisms leading to potential recovery. Nowadays, at least in some Mediterranean countries, forests are often felled after the fire and sprout selection occurs later. This is because the fire is considered to have damaged the vascular tissue leading to stem necrosis. Hydraulic feedbacks could exacerbate the
responses when the fire was preceded by a strong drought that defoliated part of the canopy (hence enhancing fire behaviour as previously mentioned). Such feedbacks between prefire drought, fire behaviour and postfire legacy responses should be at the forefront of our research efforts (Karavani et al., 2018).

V. Role of hydraulic traits on plant-herbivore insects–pathogens interactions

The xylem plays a key role in organizing defences against various biotic stresses (Shigo, 1984; Tyree & Zimmermann, 2002), but plant hydraulics is still rarely studied in the context of plant pathology and entomology. Vessel anatomy and compartmentalization, hydraulic conductivity, plant water status and stomatal conductance are traits that underlie plant interactions with insects or pathogens and pathological disturbances (Gely et al., 2020). In addition, interactions between biotic and abiotic stressors can amplify their individual impacts on the capacity of the plants to absorb and transport water (Fig. 4; Griffin-Nolan et al., 2021; McDowell et al., 2022). Hence, it is time to recognize the pivotal role of plant hydraulic traits in plant–pathogen interactions and pave the way for further research in this domain.

Xylem vessels host a large breadth of endophytic microorganisms and some of them are vascular pathogens (Pearce, 1996). Plant responses to vascular fungi or bacteria, and the toxins they often produce, can lead to compartmentalization of the xylem in order to block the spread of the pathogen (Shigo, 1984; Yadeta & Thomma, 2013). This highlights the role of xylem anatomical characteristics in plant–pathogen interactions, for example, through the size of the vessels or the pits (Venturas et al., 2014). Pathogenesis can induce losses in hydraulic conductance resulting from pathogen clogging of the xylem conduits (Deyett et al., 2019; Ingel et al., 2022), cavitation (Pérez-Donoso et al., 2007) or vessel occlusion by gums and tyloses (Sun et al., 2013; Bortolami et al., 2019). These losses can lead to xylem hydraulic failure and induce irreversible dehydration of the distal organs (Mensah et al., 2020; Bortolami et al., 2021a). Recently, the use of X-ray microtomography coupled with the contrasting agent iohexol...
revealed an induced production of tyloses and/or gels and the subsequent loss in hydraulic conductivity in vivo, which shed new light on xylem functioning during vascular pathogenesis (Bortolami et al., 2019, 2021a). As plant hydraulic functioning is directly linked to gas exchange and carbon metabolism (McDowell, 2011; Pinheiro & Chaves, 2011), these losses in hydraulic conductance induced by vascular pathogenesis can affect stomatal regulation (Bortolami et al., 2021b).

Vascular dysfunction may also be linked to insect damages leading to the abnormal production of xylem (Liphschitz & Mendel, 1987), the alteration of xylem fibre anatomy (Hillabrand et al., 2019b), the increase in vulnerability to embolism (Aguadé et al., 2015) or the alteration of hydraulic conductivity (Hillabrand et al., 2019a; Fig. 4). Also, insect mining damages induce the partial closure of the stomata, enriching leaf δ13C and reducing plant transpiration (Bansal, 2015; Peschiutta et al., 2016; Wagner et al., 2020). In the short term, this may have some positive effects for the plant as it would reduce water losses and thus its risk of hydraulic failure (Wagner et al., 2020); however, it would also reduce considerably carbon assimilation. Leaf-mining insects not only compromise the leaf’s water-retaining properties by feeding on both superficial and deeper living tissues, but epidermis mining can also result in cuticle breaks. This, in turn, leads to an increase in plant residual transpiration (Raimondo et al., 2013), significantly elevating the risk of hydraulic failure in infected plants (Billon et al., 2020; Blackman et al., 2023).

Overall, biotic damage can increase in water-stressed plants. However, such damages also depend on the interactions between drought and biotic stressors, which, as the same time, are influenced by the pathogen’s lifestyle (biotrophic, hemibiotrophic, vascular, necrotrophic; Jactel et al., 2012, 2019; Supporting Information Fig. S1; Table S1; Notes S1), the insect feeding guild (xylemtappers, bark or wood borers, leaf chewers or miners and gall formers; Gely et al., 2020), as well as both the timing and intensity of water stress. Thus, too negative water potentials can limit the development of the xylem-inhabiting microorganisms (Beattie, 2011) and sap-feeding insects (Huberty & Denno, 2004) but also increase the susceptibility of conifers to bark beetle attacks through a decrease in duct and resin volume production (Gaylord et al., 2013). Different pathogen and insect guilds can interact with plant hydraulic functioning (vessel occlusion; loss of hydraulic conductivity; and stomatal regulation) and/or carbon balance (carbohydrate consumption or activation of the plant defence response), which could impair maintenance of carbon-dependent metabolic, defence or hydraulic functions (Martínez-Vilalta, 2014; Anderegg, 2015; Jactel et al., 2019; McDowell et al., 2022). For example, insect defoliation can alter xylem fibre anatomy more consistently and severely than drought alone, likely leading to a reduced structural support to vessels and an increased vulnerability of defoliated plants to drought-induced cavitation when leaf area recovers (Hillabrand et al., 2019b). Drought-induced stomatal closure can lead to a reduced production of carbon-based defensive compounds leading to amplified pathogen and insect attacks and damages (McDowell et al., 2008). For example, low kino, resin or latex production have been shown to reduce tree capacity to resist secondary bark beetles and wood borer attacks (Gaylord et al., 2013; Gely et al., 2020) and low carbon availability for defence will reduce plant resistance to necrotrophs and vascular pathogens in particular (Oliva et al., 2014). However, reduced nonstructural carbohydrate content on water-stressed trees may also alter host quality for insects and pathogens. For example, during severe drought conditions, the concentration of soluble sugars in phloem decreases, reducing nutritional compounds availability for sap-sucking and leaf-feeding insects (Gely et al., 2020) as well as for biotroph pathogens that directly depend on the quality of the infected tissue (Oliva et al., 2014).

The interactions between biotic and abiotic stresses may be synergistic (Croisic et al., 2001; Gao et al., 2017, p. 201; Lima et al., 2019), antagonistic (Arango-Velez et al., 2016; Bortolami et al., 2021b), or neutral (Lopisso et al., 2017), and they likely vary with the ecology of the biotic agent, abiotic stress intensity and the measured hydraulic traits (Bansal, 2015). Therefore, hydraulic traits play a key role in understanding the interaction between drought-induced decrease in plant water potential and plant functional response to biotic stressors, but they are rarely monitored in this context. In fact, among 62 reviewed studies on drought and cryptogamic disease interactions in plants (see Supporting Information), only 60% of them used an unambiguous metric of plant water status (leaf or stem water potential) to quantify drought intensity, while only 11% measured hydraulic traits (hydraulic conductance, gas exchange or RWC). Considering the interacting effects between biotic and abiotic stressors across latitudes and cropping systems is crucial to predict plant functioning under the actual climate change context, especially in the long term when abiotic and biotic factors can interact to predispose, incite, or contribute directly or indirectly to plant death (i.e. the ‘death spiral’, Manion, 1981; Griffin-Nolan et al., 2021). Pathologists and entomologists should therefore explicitly quantify the plant water status in general, and plant hydraulic traits in particular, if we are to better understand the mechanisms involved in insect– or pathogen–plant interactions.

VI. Plant hydraulics as a hub for vegetation models

Vegetation function and dynamics process-based models (VFDM) are becoming necessary tools to predict the impact of climatic change on vegetation dynamics and associated ecosystem services. Historically, VFDM were primarily based on modelling the gas exchange between the canopy and the atmosphere, with a primary focus on carbon dynamics (Fatiachi et al., 2019). More recently, the implementation of plant hydraulics in VFDM has gained in popularity with strong expectations to improve predictions of the impact on tree physiology and thus on forests’ response to climate change (Rowland et al., 2021; Trugman, 2022).

Whole-plant hydraulic models simulating plant water use and transport (Sperry et al., 1998), embolism and refilling (Edwards & Jarvis, 1982; Sperry et al., 2003) and even drought-related mortality (Martínez-Vilalta et al., 2002) have long been available. However, it is only recently that such models have been framed with the goal of being operational to predict ecosystem functions and dynamics at global scales (De Cáceres et al., 2021; Ruffault et al., 2023). There are potential benefits of
such integration, in particular the possibility to improve climate change impact simulations by mechanistically accounting for the combined effect of atmospheric and soil drought on the plant water status (e.g. water potential, Allen et al., 2015; Martin-StPaul et al., 2023; see Section I; Fig. 1). In fact, when implemented in multilayer vegetation models, this also allows to represent microclimatic effects on plant water status (De Caceres et al., 2021). In addition, the possibility of accounting for plant hydraulic traits and environmental conditions – increasingly available in different databases – enables the integration of knowledge and data to generalize predictions of the sequence of plant responses to drought (see Section I). For instance, the explicit representation of plant water potentials allows to account for sink limitations (i.e. cambial activity) when simulating secondary growth (Hayat et al., 2017). More specifically, turgor effects can now be included, along with temperature effects, when predicting cambium division and cell expansion (Cabon et al., 2020), although there are still some questions to address about the integration of these sink limitations with other determinants of xylogenesis, such as hormonal control (Hartmann et al., 2017) or sugar availability (Carteni et al., 2018). In addition, thanks to their traits-based approach and the increasing knowledge of trait coordination and syndromes (Section VI) hydraulic models have also the potential to help identify trade-offs between productivity and stress tolerance (Section II) and improve the representation of succession and forest dynamics (Morin et al., 2021). Plant hydraulic models also allow to model gas exchange during drought by accounting for plant water status (Fig. 5), opening the door to new stomatal behaviour models...
functional traits, tree hydraulic properties influence tree water use, photosynthesis and growth, while also crucially determining tolerance to drought. This makes hydraulic traits good candidates to predict tree behaviour and forest dynamics under actual climate change scenarios. However, a fundamental question remains: how are hydraulic traits related to the trait trade-off axes governing tree functions and forest demography? (Volaire, 2018; Guillemot, et al., 2022).

Current knowledge states that plant function can be largely captured by a fundamental axis differentiating the acquisitive and conservative strategies: the ‘fast–slow’ axis (Reich, 2014). The fast–slow axis was originally described as a leaf economic axis (Wright, et al., 2004), contrasting fast and slow return on investments of nutrients and dry mass in leaves, and was later proposed to apply at the whole-plant scale to explain individual performances and demography (Reich, 2014). Consequently, in this axis, leaf photosynthesis can be interpreted as a return on a building investment. As water mainly runs through the soil–plant–atmosphere continuum, this interpretation may not apply, and there is still an open debate on how to expand the axes related to carbon and nutrients to whole-plant water relations. Various studies suggested that species exhibiting high growth and/or acquisitive leaf traits tended to have lower hydraulic safety margin and xylem hydraulic resistance (Oliveira et al., 2021; Guillemot et al., 2022). This suggests that drought tolerance is, to some extent, aligned with the fast–slow axis, but the mechanisms involved remain elusive. In this sense, at least three nonexclusive mechanisms could be involved:

1. A direct trade-off among xylem traits

The hydraulic safety–efficiency trade-off states that species evolving xylem able to efficiently transport water are also more vulnerable to cavitation, due to inherent structural constraints. However, the relationship between safety and efficiency is very weak (Gleason et al., 2016). Studies on this topic mostly considered efficiency as the ability to transport an amount of water in a small cross-section of living wood (i.e. space-use efficiency). However, other definitions of xylem hydraulic efficiencies exist (Bittencourt et al., 2016; Mencuccini et al., 2019) and deserve to be better explored in relation to drought tolerance, such as hydraulic energy efficiency (the energy invested – production and maintenance – in the hydraulic system) or the hydraulic nutrient efficiency (hydraulic conductance by unit nutrient invested). If these alternative definitions of efficiency show a clearer trade-off with drought tolerance, they would be compatible with the return-on-investment concept of the leaf economics, and would pertain to the mechanisms described in the next paragraph.

2. A trade-off between water relations and carbon and/or nutrient investment

A stomatal safety–efficiency trade-off was recently proposed (Henry et al., 2019), where species with greater maximum stomatal conductance show greater sensitivity to closure during leaf dehydration, that is, a higher leaf water potential at which stomatal conductance is reduced. This trade-off potentially relates to the

VII. Water-use and drought tolerance strategies in the global spectrum of plant functions

Trait-based ecology posits that functional traits describe the ecological strategies of individuals and species, influence their performance and fitness and, therefore, allow predictions of population-level demographic rates, community dynamics and ecosystem functioning (Violle et al., 2007). Among the different

Plant hydraulic modelling is seen as a promising tool to predict the disturbances related to water stress in VDFM. First, it enables the evaluation of drought-induced mortality caused by hydraulic failure and/or plant desiccation (De Kauwe et al., 2020; Cochard et al., 2021; Ruffault et al., 2022), thanks to empirically determined thresholds (Section I). Furthermore, it can predict moisture content in different plant organs, which proves to be a better factor in explaining mortality (Mantova et al., 2021; Section I) and could also be associated with other disturbances such as wildfire risk (see Section III). However, the most recent studies attempting to apply hydraulic models to predict mortality at a large scale, showed relatively modest improvements compared with more simple empirical approach (Venturas et al., 2021). Nevertheless, this accuracy is expected to improve with a more robust parameterization not only of trait variability, but also of the structural properties of the stands and other environmental variables such as local edaphic conditions such as soil depth or percent rock content (Trugman et al., 2021; Venturas et al., 2021; Trugman, 2022).

Another important aspect is gaining a better understanding of the interdependency between water and carbon processes and their role in mortality (McDowell et al., 2022). In this sense, available models can simulate both xylem and sugar phloem transport (De Schepper & Steppe, 2010; Hölttä et al., 2017), but a more precise mechanistic coupling is still required between water and carbon economies concerning water transport and stomatal behaviour. Additionally, simulating the legacies of previous drought impacts is challenging as it necessitates an explicit representation of functional sapwood area and accurate predictions of growth following drought events. While models incorporating plant hydraulic can simulate plant competition for water resources, advancements are needed to understand to what extent plants coexisting in the same stand share the same water pools. Furthermore, the linkage of plant hydraulic physiology to pathogens and pest attack risk (as mentioned in Section IV) is currently poorly implemented.

Apart from this, one of the most relevant challenges for the plant hydraulic models is appropriately parameterizing plant hydraulic, taking into account both interspecific and intraspecific variability. Global plant trait databases serve as essential data sources for this task. However, additional knowledge is required in cases where further scaling of tissue-level measurements to organ- or plant-level parameters is needed (see Section VI). Strategies such as utilizing trait relationships or other approaches to fill missing trait data (De Cáceres et al., 2023) and considering plastic trait responses to changing environmental conditions are essential in this process.

New Phytologist (2023)
www.newphytologist.com
© 2023 The Authors
New Phytologist © 2023 New Phytologist Foundation

14698137, 0, Downloaded from https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.19463 by Inrae - Dipso, Wiley Online Library on 18/03/2023. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License.
observation that species with high stomatal conductance at low VPD show a greater sensitivity to VPD, as originally described by (Oren et al., 1999). Overall, this implies that acquisitive species show greater isohydricity, that is, they have a narrower leaf operating range under water stress, which implies a higher (less negative) turgor loss point. Variation of turgor loss point between species is known to be largely driven by leaf osmolality (Bartlett et al., 2012), which is related to the nutrient and carbon investment in organic and/or inorganic solutes (Patakas et al., 2002). Therefore, anisohydry, that is wider leaf operating range under water stress, may come at the cost of higher structural and osmotic carbon and/or nutrient investment, which may align water relation strategies on the fast–slow axis.

3. An indirect effect of carbon or nutrient scarcity on water relation traits

Recent studies reported that tropical woody species with more resistant xylem occur preferentially on P-poor soils and they show low leaf P concentration (Oliveira et al., 2019; Guillemot et al., 2022). Although this pattern could arise from the mentioned energy or nutrient cost of water transport, it could also merely result from the fact that nutrient-poor soils impose slow conservative strategies that favour efficient nutrient use and low tissue turnover. This results in species growing dense, small-vessel wood (Heine-man et al., 2016), which may also exhibit high xylem resistance to embolism. In such a case, the association between drought tolerance and slow strategy would not arise from adaptive trade-offs but rather from an exaptive result of resource scarcity (Laughlin et al., 2020). Understanding the mechanisms by which nutrient limitation affects xylem anatomy and function in plants could significantly improve predictions of plant survival during drought across different locations, environments and even taxonomic groups (Cary et al., 2020).

In resume, future research needs to link root-scale, xylem-scale and leaf-scale water relation traits and processes to plant growth, reproduction and mortality. This will allow us, on the one hand, to predict forest dynamics under climate change and, on the other hand, to unveil the evolutionary and physiological constraints within which breeding programs can seek to improve plant species performances.

VIII. Conclusions and prospects

Variations in plant hydraulic properties, such as conductivity and resistance, can have a profound impact on plant water relations. These changes can directly affect critical plant functions, such as stomatal behaviour, photosynthetic capacity, growth and susceptibility to environmental stressors and disturbances such as drought, pathogens and wildfires. The purpose of this review is to highlight the increasing significance of plant hydraulics in diverse scientific disciplines that have recognized hydraulic traits as critical components. Thus, the integration of the plant hydraulic properties into studies and vegetation models aimed at understanding the functioning and response of ecosystems under drought conditions is crucial for the evaluation of plant response to drought and its impacts on forest and agronomic ecosystems. Indeed, this will provide novel information for selecting and breeding more resilient and productive species or varieties to maintain their productivity even under drought conditions. Similarly, plant hydraulics-related processes are key for evaluating fire activity, encompassing biogeographical patterns of burned areas, fuel dynamics and the interplay between prefire drought, fire behaviour and postfire effects. It can also significantly improve our understanding of the mechanisms involved in insect– or pathogen–plant interactions and of the influence of drought on them. Also, understanding the relationship between hydraulic traits and the trade-offs defining a more acquisitive or conservative strategy for the different species is a fundamental question to plant behaviour and forest dynamics in the face of climate change. Therefore, expanding the use of these hydraulic aspects to other fields and disciplines offers promising perspectives for assessing and predicting the effects that climate change and, more specifically, drought will have on both forestry and agricultural systems through its influence on both abiotic and biotic factors.

Acknowledgements

This article is an output of the international network ‘PsiHub’ funded and supported by the ECODIV department of INRAE. This review was partly supported by the H2020 Project FORGENIUS (Improving access to FORest GENetic resources Information and services for end-USers) #862221.

Competing interests

None declared.

ORCID

Thomas Boivin https://orcid.org/0000-0003-1694-2425
Regis Burlett https://orcid.org/0000-0001-8289-5757
Maxime Cailleret https://orcid.org/0000-0001-6561-1943
Hervé Cochard https://orcid.org/0000-0002-2727-7072
Déborah Corso https://orcid.org/0000-0002-3797-0153
Miquel De Caceres https://orcid.org/0000-0001-7132-2080
Victor Resco De Dios https://orcid.org/0000-0002-5721-1656
Chloé E. L. Delmas https://orcid.org/0000-0003-3568-605X
Sylvain Delzon https://orcid.org/0000-0003-3442-1711
Antonio Díaz-Espejo https://orcid.org/0000-0002-4711-2494
Pilar Fernández-Connadi https://orcid.org/0000-0001-7025-2623
Joannes Guillemot https://orcid.org/0000-0003-4385-7656
Laurent J. Lamarque https://orcid.org/0000-0002-1430-5193
Jean-Marc Limousin https://orcid.org/0000-0002-2734-2495
Marylou Mantova https://orcid.org/0000-0003-4445-3100
Nicolas K. Martin-StPaul https://orcid.org/0000-0001-7574-0108
Maurizio Mencuccini https://orcid.org/0000-0003-0840-1477
Xavier Morin https://orcid.org/0000-0003-1961-8700
François Pimont https://orcid.org/0000-0002-9842-6207

© 2023 The Authors
New Phytologist © 2023 New Phytologist Foundation
www.newphytologist.com
References

Supporting Information

Additional Supporting Information may be found in the Supporting Information section at the end of the article.

Fig. S1 Drought impacts on symptoms and damages of plant disease caused by fungi and oomycete.

Notes S1 Effects of water stress on plant diseases caused by fungi and oomycetes were reviewed using vote-counting approach.

Table S1 List of articles that tested the effect of water stress on plant diseases caused by fungi and oomycetes.

Please note: Wiley is not responsible for the content or functionality of any Supporting Information supplied by the authors. Any queries (other than missing material) should be directed to the *New Phytologist* Central Office.