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Abstract

In this review, available knowledge on angular leaf spot (ALS) of bean, caused by Phaeoisariopsis griseola,
is analysed and synthesised. This is done through a systems-analytical approach, and successive flowcharts
of the system, in order to identify knowledge gaps and guide further research. Six connected sub-models of
the ALS monocycle are used as a framework: lesion establishment, lesion extension, defoliation, sporu-
lation, spore liberation, and spore deposition. Each of the sub-models enables the linking of processes to
various effects of environmental (physical and host) factors. Disease-induced defoliation is one feature of
the pathosystem, leading to a depletion of infectious tissues from the canopy, which are transferred to the
ground. Consequences of defoliation may include: strong reductions of the amount of inoculum and of
vacant sites in the canopy, limited maximum disease severity, and progressive accumulation of inoculum
below the canopy, which may become important a later stage of disease epidemics. These elements are
hypothesised to explain the typical behaviour of ALS epidemics in the field, especially late onset, high
apparent rate of disease increase, and low level of terminal disease severity in the standing canopy. Epi-
demiological consequences of lesion expansion, sporulation, and survival of spores deposited onto the
canopy are other knowledge gaps in this pathosystem.

Introduction

Angular leaf spot (ALS) is caused by Phaeoisari-
opsis griseola, and is an important bean disease in
the tropics and subtropics (Schwartz et al., 1981;
Saettler, 1991). ALS causes typical symptoms on
the leaves with angular shaped lesions as well as
lesions on other aerial plant parts (stems, petioles,
and pods) (Cardona-Alvarez and Walker, 1956).
ALS epidemics are usually observed relatively late
in the crop cycle (typically about the flowering
stage) (Saecttler, 1991; Allen et al., 1998). Lesion
multiplication and extension on the foliage lead
to defoliation, a prime mechanism leading to re-
duced physiological performance of the canopy

(Bergamin Filho et al., 1997). ALS may be seen as
a representative of many foliar, tropical diseases of
legumes caused by hemi-biotrophic fungi.

The purpose of this review is to analyse and
synthesise knowledge on ALS epidemiology. Al-
though the overall quantitative behaviour of ALS
epidemics is poorly understood, much is known on
the underlying processes. Thus although the
behaviour of ALS epidemics as a system is not well
understood, the level of knowledge on components
of the disease cycle is fairly well documented. One
step towards a better epidemiological under-
standing is to collate current knowledge using a
formal framework, and generate an overall view of
the Bean — P. griseola system. This is done here
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using a systems modelling approach, whereby
processes are linked together, factors identified,
and parameters accounting for the effects of fac-
tors on processes, outlined. The approach is that
of Forrester (1961), applied to plant pathology
(Zadoks, 1971; Teng, 1985). This allows (Rabbinge
et al., 1989) (i) a scale-up of information from one
level of integration (disease cycle) to the next
(epidemic), (ii) identification of knowledge gaps,
and (iii) guidance of further research.

ALS epidemics result from the functioning of a
fairly complex system. This review is organised in
six sub-models corresponding to different phases
of the disease cycle. These sub-models are then
connected to form an overall systems model that
synthesises our quantitative knowledge on ALS
epidemiology. This systems model is then used to
discuss our understanding of ALS epidemics.

Monocyclic process: the infection cycle

Sub-processes of epidemics, sub-models, and
couplers

The infection cycle, i.e., the building block of
epidemics (Kranz, 1974; Zadoks and Schein, 1979)
in angular leaf spot can be decomposed into five
groups of processes (Figure 1):

1. Lesion establishment, corresponding to sub-
model A;

2. Lesion
model B;

3. Defoliation of infected host leaves bearing
lesions, corresponding to sub-model C;

4. Sporulation on infectious sites, corresponding
to sub-model D;

5. Spore dispersal, corresponding to sub-models
E (spore liberation) and F (spore deposition).

extension, corresponding to sub-

Mechanistic simulation models often consist of
several sub-models, each representing different
groups of processes. These can be linked by cou-
plers (Zadoks and Rabbinge, 1985) which enable
the dynamical connection of processes within the
system. The different sub-models are shown in
Figure 1, with their relationships materialised as
couplers:

— coupler Cpc links lesion establishment to host
defoliation, whereby removal from the canopy

of infected sites (latent or infectious) brings
also about the removal of healthy ones;

— Cuap links lesion establishment to lesion exten-
sion;

— Cacp links infectious lesion establishment in
the canopy (A) and on the ground (C) to spor-
ulation in the system (D);

— Cpp links lesion extension to sporulation;

— Cpg links spore accumulation in the system
(attached and detached leaves on the ground)
to spore liberation;

— Cgr links flows of liberated spores from two
sources (attached and detached infected leaves)
to spore deposition onto the canopy, or spore
loss; and,

— Cga links spore deposition to the inflow of
new efficient spores.

Table 1 lists the different state variables, rates,
parameters and factors used in the six sub-models,
and their dimensions.

Lesion establishment

Lesion establishment is considered here as the
group of processes including spore germination
until the end of the latency period. Effects of dif-
ferent factors on lesion establishment reported in
the literature are summarised in Table 2.

Spore germination in P. griseola is strongly
dependent on moisture. Spore germination on the
leaf surface only takes place under moist condi-
tions and occurs within three days after spore
deposition (Monda et al., 2001). By contrast, the
range of temperatures where spore germination
is possible is very wide (5-33 °C), and so is the
range of (near) optimal temperature (18-28 °C)
(Cardona-Alvarez and Walker, 1956; Sindhan and
Bose, 1980a). On the other hand, radiation does
not appear to influence spore germination (Llanos,
1957; Santos-Filho et al., 1976).

Infection has often been recorded in the litera-
ture as a relative amount of successful lesion
establishment, and so reported results incorporate
spore germination. The range of temperature where
infection occurs is wide (10-33 °C) (Cardona-
Alvarez and Walker, 1956; Sindhan and Bose,
1980a; Bassanezi et al., 1997, 1998), but less so than
for spore germination. However, disease develop-
ment does occur at cool temperatures (16 °C), as
reported by Inglis and Hagedorn (1986). Infection
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Figure 1. Monocyclic processes in angular leaf spot of bean synthesised as sub-models A, B, C, D, E and F, and the connecting
couplers. Cap: coupler linking lesion establishment to lesion extension, Cac: coupler linking lesion establishment to host defolia-
tion, Cpp: coupler linking lesion extension to sporulation, Cacp: coupler linking lesion establishment in the canopy and on the
ground to sporulation, Cpg: coupler linking spore accumulation in the system to spore liberation, Cgg: coupler linking liberated
spore flows to spore deposition and loss, Cga: coupler linking spore deposition to the inflow of new efficient spores.

efficiency (the ratio of established lesions to
deposited spores) (Zadoks and Schein, 1979) was
specifically studied by Willocquet et al. (2004), and
was below 0.1 when inoculated plants were exposed
to less than two consecutive nights of leaf wetness
(i.e. two 16 h periods of continuous wetting at 70—
100% RH with 8 h dry intervals at 50-80% RH).
Optimum infection efficiency, about 0.5, was ob-
tained after three to four consecutive wet nights,
and infection efficiency was not increased by addi-
tional wet nights. These results concur with earlier
reports concerning lesion establishment, where
relative humidity in the air or leaf wetness duration
(Cardona-Alvarez and Walker, 1956; Llanos, 1957;
Campos-Avila and Fucikovsky Zak, 1980; Sindhan
and Bose, 1980a) were varied. Recent results from
Willocquet et al. (2004) also show that a single long
continuous period of wetness is not necessary for
infection to occur, because the authors exposed the
inoculated plants to high humidity only during
nights (16 h at 70-100% RH during nights and 8 h
at 50-80% RH during days). Radiation does not
appear to have a measurable effect on infection
processes (Cardona-Alvarez and Walker, 1956). By
contrast, host genotype by pathogen isolate effects
are very strong, as illustrated by results reported by
Correa-Victoria (1987), where two to 464 lesions

per plant developed on a range of 17 Latin Amer-
ican isolates of P. griseola inoculated to 21 bean
cultivars. Conversely, lesion density also varies
according to the cultivar x isolate combination
(from 0.47 to 5.24 lesions cm ™) (Sartorato, 1989).

Latency period (LP, Table 1), the delay from
spore deposition onto the host to production of a
new generation of propagules (Zadoks and Schein,
1979; Campbell and Madden, 1990), is an impor-
tant epidemiological parameter, as it determines
the number of infection cycles a pathogen can
cause during the life-cycle of its host. In the case of
ALS, as in many hemi-necrotrophic foliar patho-
gens (Rapilly, 1983), the incubation period often
coincides with LP as sporulation may be initiated
as soon as the first lesions appear under high
moisture conditions. Information pertaining to
both the incubation period and the latency period
is summarised here.

Incubation period in ALS is delayed at low
temperatures (Cardona-Alvarez and Walker, 1956;
Buchurara, 1983; Bassanezi et al., 1997, 1998), and
varies from 12 to 15 days, 9 days, and 10 days at
16 °C, 24 °C, and 28 °C (Cardona-Alvarez and
Walker, 1956), respectively. Large variation with
the considered cultivar x isolate occur (Correa-
Victoria, 1987; Buruchara et al., 1988; Sartorato,



332

Table 1. List of state variables, rates, parameters and factors used in sub-models A, B, C, D, E and F

Symbol Meaning of symbol Dimension®
State variables

DSPO Number of spores deposited on canopy leaves [Nspores]
HSITE Number of healthy sites [Nites]
INFC Number of infectious sites on canopy leaves [Nsites]
INFD Number of infectious sites on defoliated leaves [Nsites]

LAT Number of latent sites [Naites]
LSPOC Number of spores liberated from canopy leaves [Nspores]
LSPOD Number of spores liberated from defoliated leaves [Nspores]
SPOC Number of spores produced on canopy leaves [Nspores]
SPOD Number of spores produced on defoliated leaves [Nepores]
Rates

rAPP Rate of appearance of infectious sites on canopy leaves Nies T
rDEFh Rate of defoliation of healthy sites Naites T
rDEFi Rate of defoliation of infectious sites Ngies T
rDEPC Rate of deposition of spores from canopy leaves [Nepores T
rDEPD Rate of deposition of spores from defoliated leaves [Nspores T
rINF Rate of infection of healthy sites Naies T
rEXT Rate of extension of infectious sites on canopy leaves Ngies T
rLIBC Rate of liberation of spores from canopy leaves [Nepores T
rLIBD Rate of liberation of spores from defoliated leaves [Nspores T
rLOSC Rate of loss of spores from canopy leaves [Nspores T
rLOSD Rate of loss of spores from defoliated leaves [Nspores T
rREM Rate of removal of infectious sites on defoliated leaves [Nsites T!
rSPOC Rate of production of spores on canopy leaves [Nypores T
rSPOD Rate of production of spores on defoliated leaves [Nspores T
Parameters

LP Latent period [T]

PINC Primary inoculum [Nspores]
Calculated (dynamic) variable

SEV Severity [-]

Factors

Cx1 Interaction between bean cultivar and P. griseola isolate [-]

LW Leaf wetness duration [T]

RAD Radiation L2271
RAIN Rainfall amount [L]

T Temperature K]

WIND Wind speed [L T

“Dimensions: [N]: numbers; [T]: time ; [J]: energy; [L]: length; [K]: temperature.

1989). Both periods have a range of 10 to 23 days
in terms of incubation (Correa-Victoria, 1987) or
of latency (Sartorato, 1989) period.

Figure 2 synthesises the lesion establishment
process and highlights some of its factors. Primary
inoculum (PINC, efficient spores) initiates the
process whereby healthy sites (HSITE) are infected
and latent sites (LAT) are produced through
infection (rINF). A key factor for infection to
occur is leaf wetness (LW), which does not app-
ear to play a role in further lesion development
(Cardona-Alvarez and Walker, 1956). Latent sites
may become infectious (INFC) after a latency
period, which may coincide with the rate of lesion

appearance (rAPP). Temperature (T) and the cul-
tivar x isolate (C x I) combination play an
important role in INFC variation.

Lesion extension

The effects of different factors on lesion extension
recorded in the literature are summarised in
Table 2. Verma and Sharma (1984) reported that
lesion size followed an optimum-type relationship
with temperature, with maximum values observed
at 15°C, which concurs with field obser-
vations where larger lesions were measured during
cooler (18-22 °C) compared to warmer (28-32 °C)
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Figure 2. Sub-model A, lesion establishment in a bean canopy. Squares represent state variables, valves represent rates, continuous
circles represent factors (fixed or variable), dotted circles represent calculated variables (e.g., severity) or parameters (set or com-

puted), continuous arrows represent flows of sites, discontinuous arrows represent flows of quantitative information from parame-
ters or factors. See Table 1 for meaning of abbreviations and dimensions.

periods. The largest lesion sizes (about 14 mm?)
and maximal rate of lesion extension (0.34 mm?
day™) were observed at 24 °C (Inglis and
Hagedorn, 1984; Bassanezi et al., 1997; Bassanezi
et al., 1998). Such a rate of lesion extension is in
the same range as for Septoria nodorum on wheat
(Berger et al., 1997). It however is smaller than
Exserohilum  turcicum on sweet corn (25—
43 mm? day™"), Phytophtora infestans on potato
(26-45 mm? day™"), or Fusarium moniliforme on
fig (225 mm? day™') (Berger et al., 1997).

For a given isolate, lesion size (range: 3.8-
20.9 mm?) strongly depends on the cultivar (Diaz
et al., 1965; Correa-Victoria, 1987), and an atypi-
cal isolate produces circular lesions of 10 mm diam
within 6 days after inoculation, with maximum
diameters up to 20 mm (Hocking, 1967). A culti-
var X isolate interaction on lesion extension has
been reported (Diaz et al., 1965; Hocking, 1967,
Correa-Victoria, 1987), the intensity of which
varies with temperature.

A low negative but significant correlation
(r=-0.49; P=0.05) was found between average
number of lesions and average lesion size by
Correa-Victoria (1987), although Diaz et al. (1965)
did not detect any significant correlation between
these variables, possibly because of a defoliation
effect.

Figure 3 summarises information from the lit-
erature on the lesion extension process in ALS
in the simplest possible way: extension of infec-
tious sites leads to a reduction of the number of
healthy sites (HSITE), which may become imme-
diately infectious (INFC). Two factors act on the

Cxl T

7Y

HSITE “i )

rEXT

INFC

Figure 3. Sub-model B, lesion extension on canopy leaves.

See Table 1 for meaning of abbreviations and dimensions and
legend of Figure 2 for meaning of symbols.

rate of lesion extension, temperature (T) and the
cultivar x isolate interaction (C x I).

Disease-induced defoliation

The effects of different factors on disease-induced
defoliation reported in the literature are shown in
Table 2. Disease-induced defoliation, which may
reach 100% under glasshouse conditions begins
first and is most rapid at 24 °C (Cardona-Alvarez
and Walker, 1956; Inglis and Hagedorn, 1986), but
is delayed at low temperatures (Cardona-Alvarez
and Walker, 1956).

The correlation between defoliation and disease
severity (proportion of diseased leaf area) is
strong, with relatively low ALS severity already
causing a substantial defoliation. For instance,
a relative rate of defoliation of 0.23 day™' was



estimated for a severity of 18% (Willocquet et al.,
2004). Similar positive correlations were found in
many leaf spot diseases of annual legumes, such as
Cercosporidium personatum ( Phaeoisariopsis per-
sonata) on groundnut (e.g., Watson et al., 1986).

Figure 4 provides a synthesis of the defoliation
of infectious sites of a bean canopy. Infectious sites
on infected leaves of the canopy (INFC) are
defoliated (INFD), bringing about the defoliation
of healthy sites (HSITE) belonging to the same
infected leaves. The underlying hypothesis of
Figure 4 is that defoliation of healthy sites is dri-
ven by that of infectious ones, and therefore that
physiological defoliation in an infected canopy is
negligible compared to disease-induced defolia-
tion. Defoliated sites remain infectious (INFD) for
an infectious period, and are then considered re-
moved (rREM) from the system. The only factor
acting on the rate of defoliation of infectious sites
(rDEF1i), and therefore on healthy ones (rDEFh) is
the disease severity (SEV). As in any foliar disease,
SEV, the proportion of infected sites, should be
seen as the result of the dynamics of disease in the
canopy, i.c., the balance between infection, defo-
liation, and host growth rates.

Sporulation

The effects of different factors on sporulation in
ALS from the literature are identified in Table 2.

HSITE INFC
b
SEV
} @ .................................................. +
rDEFh rDEFi

@4 3¢ INFD

rREM

Figure 4. Sub-model C, defoliation of infected leaves bearing
healthy and infectious sites. See Table 1 for meaning of
abbreviations and dimensions and legend of Figure 2 for
meaning of symbols.
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The range of temperature where sporulation
occurs is very wide (10-30 °C) (Santos-Filho et al.,
1976; Campos-Avila and Fucikovsky Zak, 1980;
Sindhan and Bose, 1980a). The relative humidity
of the air is a very strong limiting factor of spor-
ulation, which does not occur below 71% (Sind-
han and Bose, 1980a). An early report by
Cardona-Alvarez and Walker (1956) indicated
that a 24 h period was required to complete the
formation of coremia, and that an additional hu-
mid 48 h period or more was necessary for spore
production. From results in controlled chamber
work, it does not appear that sporulation is
influenced by radiation (Santos Filho et al., 1976).
A temperature—isolate interaction exists, with
some isolates having an optimal sporulation tem-
perature at 19 °C, whereas the optimum temper-
ature for other isolates is 24 °C (Buruchara, 1983).
Cultivar—isolate interactions occur too, with large
effects on sporulation density (5-800 spores mm >
of lesion area) (Correa-Victoria, 1987). Sporula-
tion density, on the other hand, does not seem to
vary with disease severity, number of lesions,
lesion size and incubation period (Correa-Victoria,
1987).

Figure 5 distinguishes two sources and two rates
of spore production in the sporulation process
occurring in an ALS-infected bean stand. Infec-
tious sites present in the canopy (INFC) and on
defoliated leaves (INFD) both produce spores,

rSPOC

INFC @j} SPOC

rSPOD

Figure 5. Sub-model D, sporulation of infectious sites on can-
opy and on defoliated leaves. See Table 1 for meaning of
abbreviations and dimensions and legend of Figure 2 for
meaning of symbols.
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which lead to two stocks of spores, in the canopy
(LSPOC) and on defoliated leaves (SPOD). Fig-
ure 5 indicates two variables acting on both the
rates of sporulation, leaf wetness (LW) and the
cultivar x isolate interaction (C x I).

Spore dispersal

Very little quantitative information is available
from the literature on spore liberation and dis-
persal in P. griseola. The effects of different factors
on spore dispersal are summarised in Table 2.
Both rain and wind appear to liberate and disperse
spores of P. griseola, and wind-blown particles
from infested soil, wind-blown spores and rain
droplet-borne spores are all effective agents of
dissemination according to Cardona-Alvarez and
Walker (1956).

Figure 6 therefore summarises the spore libera-
tion from lesions in a diseased canopy (SPOC) and
on defoliated leaves (SPOD) by rain and wind.
Figure 7, in turn, represents the rates of deposition
(rDEPC and rDEPD) from both stocks of spores
which (daily) accumulate in a (combined) stock of
spores deposited onto the canopy (DSPO), and the
process of spore loss through two loss rates

SPOC = } LSPOC

@

.

v,

*, Yo

.0

FLIBC ", e, RAIN

SPOD

Figure 6. Sub-model E, spore liberation from infectious sites
on canopy and defoliated leaves. See Table 1 for meaning of
abbreviations and dimensions and legend of Figure 2 for
meaning of symbols.

(rLOSC and rLOSD). Spore loss is assumed to
occur through escape from the system in the
atmosphere and deposition on the ground. All
four rates are made dependent on rainfall and
wind.

Overview and discussion
ALS epidemics: phenomenology

The dynamics of ALS epidemics have been de-
scribed and analysed by several authors (e.g.,
Bergamin Filho et al., 1997) and may be charac-
terised with the following attributes: (i) late onset,
(ii) rapid increase towards the end of the cropping
season, (iii) low maximum severity. Examples are
provided in Figure 8, with disease progress curves
derived from experiments conducted at EMBRA-
PA Center Arroz e Feijao (Goiania, Brazil) in
2004, where disease severity (Godoy et al., 1997)
was monitored weekly in untreated bean plots
(5.5%5.5 m, with 0.25 m spacing of cv. Roshina
G2). Discase severity progress was slow at the
beginning, but increased rapidly in the last third of
the cropping seasons. The apparent rate of disease
increase (Van der Plank, 1963) varied from 0.154
to 0.210 day™!, these values being slightly higher
than those estimated by Buchurara et al. (1988) in
a susceptible cultivar (r=0.142). Terminal severi-
ties were low, from 5 to 9% of diseased area,
and are lower than terminal severities generally
reported in the literature: from 5 (Jesus Junior
et al., 2001), to 9% (Silva et al., 1998), 23% (Mora
et al., 1985), 25% (Jesus Junior et al., 2003), 27%
(Carneiro et al., 1997), 28% (Buchurara et al.,
1988), and 29% (Bergamin-Filho et al., 1997).

Structure of a systems model

The combination of the successive sub-compo-
nents (processes) described in Figures 2-7 results
in Figure 9, which gives an overview of the basic
monocycle components (Teng and Close, 1978;
Zadoks and Schein, 1979) of ALS epidemics.
Factors influencing rates have been removed from
the diagram in order to retain the main features of
the processes themselves. Note no change in
healthy sites (HSITE) over time, i.e. no host
growth is included in the structure of Figure 9.
Figure 9 is an expansion of Figure 1, where the
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Figure 7. Sub-model F, loss and deposition of the liberated spores from canopy and defoliated leaves. See Table 1 for meaning of
abbreviations and dimensions and legend of Figure 2 for meaning of symbols.
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Figure 8. ALS severity progress curves in four untreated bean
plots (EMBRAPA, Brazil, 2004).

main elements of Figures 2—7 have been retained,
and where the couplers between sub-models have
been replaced by rates, flows of sites, or flows of
quantitative information, as appropriate. Many of
the processes indicated in Figure 9 are classical
components of plant disease epidemics affecting
aerial plant parts (Van der Plank, 1963; Zadoks
and Schein, 1979; Campbell and Madden, 1990),
e.g. infection, latency, sporulation, spore dispersal,
and deposition. This systems model may be qual-
itatively linked to the behaviour of ALS epidemics,
in particular, their delayed onset, their rapid in-
crease, and their low terminal severity.

Disease-induced defoliation and its epidemiological
consequences

Disease-induced defoliation is one important fea-
ture of the ALS pathosystem, which can affect
disease severity in several ways. First, defoliation
leads to a loss of diseased leaves (including dis-
eased and healthy sites, rDEFi, rDEFh, Figure 4)
which cannot be assessed in disease measurements.
Second, loss of diseased leaves may alter the crop
microclimate, rendering it less favourable for dis-
ease intensification. Third, defoliation reduces
growth, and thus the production of healthy sites
available to infection. Consequences of defoliation
may therefore include: (1) a reduction of inoculum
present within the canopy and its transfer to the
ground, (2) changes in the crop microclimate, (3) a
reduction of LAI and so of vacant sites which
otherwise could intercept dispersed spores, and (4)
limited maximum disease severity. In addition to
these four consequences, disease induced defolia-
tion delays the increase in disease severity. This is
discussed in the following section.

In many countries where bean is an important
crop, selection for resistance is the main, often the
only, practical direction for disease management.
So far, selecting for complete resistance to this
disease has proven extremely difficult (Correa and
Saettler, 1987; Allen et al., 1998). Also, selection
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Figure 9. Synthesis flowchart representing the P. griseola cycle with sub-models A, B, C, D, E and F. A, B, C, D, E, and F: refer
to sub-models shown in Figure 1. See Table 1 for meaning of abbreviations and dimensions and legend of Figure 2 for meaning of

symbols. Not all relationships are shown (see text for details).

for incomplete resistance is confronted with an
extremely variable pathogen (Sartorato, 1989;
Sartorato and Rava, 1992). Selection could take
advantage of new knowledge gained on the func-
tioning of the pathosystem, in particular, the dy-
namic relationship between severity, defoliation,
and inoculum remobilisation. For instance, bean
cultivars that shed their leaves rapidly after being
infected would not allow the pathogen to build
inoculum sources, either in the canopy or at its
base, thus delaying epidemics. Excessive defolia-
tion would of course reduce yields so strongly
that a balance between healthy area duration
(Bergamin Filho et al., 1997), yield accumulation,
and disease progress is to be sought. Simulation
models using structures derived from Figure 9
could be useful to achieve that aim.

Delayed epidemics

An hypothesis to explain delayed epidemics is the
progressive accumulation of infectious tissues on
the ground through defoliation (Figure 4, rDEFi)
in a first phase, followed by the progressive mo-
bilisation of this inoculum in a second phase
(sporulation on lesions on shed leaves: Figure 5,
rSPOD; spore liberation from this source: Figure 6,
rLIBD; deposition of spores of this source on the
canopy: Figure 7, rDEPD). Another hypothesis is
that the microclimate (especially leaf wetness) may
be unfavourable for lesion establishment (Figure 2,

LW and rINF) until canopy closure. A third
hypothesis to explain delayed epidemics is related
to the availability and amount of primary inoculum
(Figure 2, PINC). Five sources of primary inocu-
lum are considered in the literature: (i) infected
seeds (on which the pathogen might survive up to
nine months) (Orozco-Sarria and Cardona-Alv-
arez, 1959; Diaz et al., 1965; Sohi and Sharma,
1974; Sindhan and Bose, 1979; Dhingra and
Kushalappa, 1980; Sengooba and Mukiibi, 1986),
(i1) infected plant debris over successive seasons
(Cardona-Alvarez and Walker, 1956; Barros et al.,
1958; Sindhan and Bose, 1979; Sengooba and
Mukiibi, 1986; Correa and Saettler, 1987; Rodri-
gues et al., 1999), (iii) infected soil (Sindhan and
Bose, 1979), (iv) infected volunteer plants, and (v)
off-season crops (Sengooba and Mukiibi, 1986).
Depending on cropping practices, crop rotation,
and crop regimens, the relative importance of these
sources may vary greatly. Information on change in
host susceptibility over development is very scarce
(Cardona-Alvarez and Walker, 1956; Sindhan and
Bose, 1980b) and controversial.

Life strategy of the pathogen: lesion extension,
sporulation, and infection efficiency

Other features of ALS epidemics are indicated
in Figure 9, including lesion extension and
sporulation. Lesion extension enables progress to
vacant sites, where sporulation may rapidly be



initiated. This process is one way for the pathogen
to intensify, and is less strongly influenced by
environmental factors, compared to infection via
propagule liberation, transport, deposition, and
germination (Berger et al., 1997). Data on spore
production in P. griseola is scarce, but suggests
that it is actually limited (propagules infectious
area™'), and strongly depends on environmental
factors (relative humidity and leaf wetness). For
epidemics to occur, a comparatively low spore
production would have to be compensated by a
very high infection efficiency, combined with a
strong survival ability of deposited or germinating
spores. Such characteristics concur with observa-
tions by Monda et al. (2001), and have been
quantitatively described in other pathosystems
(e.g. Kaizer and Lukezic, 1966; Eversmeyer and
Burleigh, 1968; Van Hees-Boukema and Zadoks,
1986; Becker and Burr, 1994), but have not been
quantitatively documented in the case of ALS.

Knowledge gaps and further research

Most of the parameters and rates in the structure
described in Figure 9 remain to be quantified.
Among them are the rates of spore liberation and
deposition, and their relationships with environ-
mental (weather) variables. Similar questions arise
when considering infection efficiency, spore pro-
duction and its duration on infectious tissues, and
factors that may influence them. Some of the rates
and parameters of Figure 9 are also under the
influence of aggressiveness of the isolate on a given
host genotype (host-isolate interaction), and of
plant age. A basic question remains to assess the
epidemiological significance of the presence of two
distinct sources of inoculum in the system. Another
generic question pertains to the life strategy of the
pathogen (Zadoks and Schein, 1979), which pos-
sibly might compensate a comparatively low spore
production by a strong survival ability of deposited
spores and of lesions themselves (lesion extension)
(Berger et al., 1997) and by a high infection effi-
ciency. These questions need further quantitative
documentation and testing.
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