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Abstract 
 The analysis of spatiotemporal patterns can provide clues about disease 
spread by assessing if the spatial pattern of diseased plants at one date is associated 
with the pattern of previously diseased plants. No generic statistical test was 
available to answer this question for spatiotemporal maps of binary data (healthy or 
diseased plants) in regular plantings (e.g., orchards). Here we describe a Monte 
Carlo test of the hypothesis that the location of newly diseased plants is independent 
of the location of previously diseased plants, even when the disease is spatially 
aggregated within each assessment period. This spatiotemporal test is designed to 
cope with the censorship arising on a lattice when plants are missing or cannot 
recover between the two dates. Expected patterns are simulated by shifting on a 
torus the whole pattern at the second date relatively to the pattern at the first date. 
For each simulation, we discard the censored points from observed and simulated 
data. In case of a positive association between disease patterns at two dates, the 
distances between newly and previously diseased trees should be smaller in the 
observed than in the simulated patterns. As an illustration, we analysed the 
dependence between patterns of trees showing Plum pox virus symptoms at two 
dates. 
 
INTRODUCTION 

One of the aims of epidemiological studies is to understand the biological 
processes driving the spread of a disease. The analysis of the observed spatiotemporal 
patterns of disease cases provides an opportunity to address questions that are related to 
the underlying processes. For a systemic disease affecting an orchard, a classical way to 
record disease spread consists of marking the disease cases (i.e., diseased trees) on a map 
at successive dates. If enough information is available on how the disease spreads, it may 
be possible to build a mathematical model, and to estimate some relevant biological 
parameters by fitting the model to the available maps. However, when such basic 
information is unknown, nonparametric tests are often more relevant for addressing 
simple questions about disease patterns. One of the basic objectives is often to assess if 
there is a secondary transmission within the orchard. If it is true, the newly diseased trees 
generally should be more clustered with previously diseased trees than what would 
happen by chance. Thus, a typical question arising from spatiotemporal disease maps is: 
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“Is there an association between the spatial pattern of newly diseased trees (t2 cases) and 
the spatial pattern of previously diseased trees (t1 cases)?”  

Provided that there is no heterogeneity in the data (e.g., mixed cultivars), the 
principle of such a test of independence is to perform many simulations (typically 1000) 
that randomly reallocate the newly diseased trees onto the orchard, and then to test if the 
observed distances between t1 cases and t2 cases are significantly different from the 
distances obtained in the randomizations. However, this apparently simple principle is 
complicated by some features of the data that, until now, have prevented the development 
of the corresponding test: (i) aggregation can exist within both t1 cases and within t2 cases 
(regardless of the relative position of the two groups of cases), and (ii) the observed 
pattern is partially censored by t1 cases and by missing trees, because no t2 case can be 
observed at the location of a missing tree or a t1 case (if the diseased trees are removed or 
if the disease quickly becomes systemic, later potential recontaminations cannot be 
detected). None of the existing statistical methods (e.g., Nelson, 1995; Mugglestone et al., 
1996; Diggle, 2003) considers these two issues. Thus, using these methods when the data 
have such characteristics would lead to inaccurate P-values (generally, misleadingly low), 
which may in turn suggest incorrect interpretations of the observed spatiotemporal 
patterns in terms of dispersal processes of the disease. In addition, some of the existing 
methods group the trees into quadrats rather than using all the information contained in 
the point pattern of diseased trees (Reynolds and Madden, 1988; Perry and Dixon, 2002), 
which reduces the power of the test to detect an existing association. Therefore, we 
developed a method based on point patterns and specifically dedicated to the analysis of 
aggregated patterns and incompletely observed data (censored by t1 cases and missing 
trees). In our Monte Carlo test, the aggregated nature of both patterns is preserved in the 
simulations of the expected patterns under the null hypothesis. 

Here we present this nonparametric test of independence assessing whether the 
locations of new disease cases depend on the locations of previous disease cases within an 
orchards or another type of regularly spaced planting. After presenting the test, its 
accuracy and its power are evaluated on computer-simulated data sets, and it is applied 
for the analysis of a spatiotemporal disease map drawn during the implementation of 
roguing against the Plum pox virus in an orchard. 
 
MATERIALS AND METHODS 
Test of Independence 

The spatial pattern of the disease within each group of cases determines the choice 
of the statistical test to be used. Thus, before testing the independence between the two 
patterns, a preliminary analysis must be undertaken to assess the spatial pattern at each 
date separately (and also to check that there is no edge effect). Here we present the test 
corresponding to the situation where this first step enabled the conclusion that each 
pattern had a non-random structure (aggregated, generally).  

This spatiotemporal test is based on a classical test (Lotwick and Silverman, 1982) 
that preserves the spatial structure of t2 cases, modified to cope with the censoring issues 
(Chadœuf et al., 1997; Chadœuf et al., 2000; Peyrard et al., 2005). An intuitive 
explanation of this test follows. First, the tested hypothesis (H0) is: “the newly diseased 
trees (t2 cases) are spatially independent of the previously diseased trees (t1 cases)”. A 
criterion naturally related to this hypothesis is the distribution of distances between 
diseased trees at t1 and diseased trees at t2. If, in the observed data, this distribution is 
significantly shifted towards small distances in comparison to the expected distribution, it 
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means that t2 cases are closer to t1 cases than what would be expected if the two patterns 
were independent, and hence H0 should be rejected. The expected distribution of 
distances under the null hypothesis is obtained by simulating 1000 random t2 patterns. 
However, if t2 cases were reallocated completely at random, we would not be able to 
differentiate nonrandomness caused by the spatial dependence between t2 cases and t1 
cases from nonrandomness caused only by the aggregation within t2 cases. Thus, only the 
relative location of the patterns is randomized, while the internal spatial structure of each 
pattern is retained. This is achieved by converting the square orchard into a torus (treating 
the opposite boundaries as if they were connected) and through randomly shifting the 
pattern of t2 cases by a random number of trees along and across rows on this torus 
(Lotwick and Silverman, 1982). All distances are measured on the torus.  

Randomisation tests are based on the principle that, under the null hypothesis, the 
probability of an event is the same in the real data and in the simulations. However, in the 
simulations, the location of every disease case is known and a t2 case can be shifted on the 
location of a non-shifted t1 cases or missing tree, whereas in the observed data such 
potential t2 case would be censored (i.e., hidden by a t1 case or a missing tree) and would 
remain unnoticed (Fig. 1). It is therefore necessary to balance the two situations, through 
discarding both the simulated t2 cases that are shifted onto the censoring patterns and the 
observed t2 cases on which this censoring pattern is shifted (Chadœuf et al., 1997). 
Because of this last censoring event, different observed t2 cases are discarded after each 
simulation and, as a result, the distribution of distances observed in the real data varies 
from one simulation to another. This prevents using a classical Monte Carlo test in which 
a single observed value (test statistic) is compared to a distribution of simulated values 
(expected test statistic under the null hypothesis). Instead, after each simulation, we 
compute the frequency distribution of toroidal distances between the observed t1 cases 
and either the observed or the simulated t2 cases; then, the difference between the two 
distributions is computed (Chadœuf et al., 2000). After rescaling it to improve the 
graphical display, this difference defines a test statistic with an observed value of 0 (when 
no shift is applied to the t2 cases). Thus, the rank of 0 among the whole set of computed 
differences provides the basis on which to decide if H0 should be rejected. The test 
statistic is computed over increasing distances d for all t1–t2 pairs of cases closer than d, 
where d takes discrete values at regular intervals (defining distance classes).   

In summary, the test statistic is defined by: Sc(d) = [N1,2
φ (d) - N1,2

 (d)]/d, where 
N1,2

φ (d) and N1,2
 (d) are the number of pairs of trees closer than a distance d involving one 

observed t1 case and one non-censored t2 case, from shifted or observed patterns, 
respectively. When t2 cases are independent of t1 cases, the interval between the 2.5% 
lower and upper values of Sc(d) should include 0, and a P-value is derived as twice the 
number of simulated values more extreme than or equal to 0 (Manly, 1991). The case of a 
positive association between disease patterns at the two dates would lead to more pairs at 
small distances in observed than in expected patterns, and thus to values of Sc(d) 
significantly below 0. 
 
Numerical Validation 

A simulation study was performed to validate this test of independence on well-
defined patterns for three levels of disease incidence (3%, 14%, and 25%). The test was 
applied to 1000 computer-generated disease patterns on a 50 × 20 grid with 2% missing 
trees, and with an average number of t2 cases twice that of t1 cases. A first Neyman-Scott 
point process was used to simulate the aggregated pattern at t1. For each simulation, 13 
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cluster centres on average were located at random, and marked points were created 
around these centres at a distance following an exponential distribution (mean: 2.5).  

The level of type I error of the test corresponds to the proportion of the 
simulations for which H0 is wrongly rejected when the t2 process was simulated 
independently of the t1 process (for a significance level α = 0.05, only 5% of the 
simulations should be rejected). In this situation, the point pattern for t2 cases is obtained 
as before, and independently of the first one. 

The statistical power of the test corresponds to the proportion of the simulations 
for which H0 is correctly rejected when the simulated process at t2 is spatially dependent 
of the simulated process at t1. In this situation, the point pattern for t2 cases is obtained by 
generating a second Neyman-Scott process from the t1 cases, with the same properties as 
the initial process. 
 
Experimental Data Set 

This test can help to address several issues, among which is the efficiency of a 
given control method to prevent further intra-orchard spread of a disease. As an example, 
we analysed a spatiotemporal disease map (Fig. 2) corresponding to a peach orchard 
planted in 1988 on a 2 × 5 m lattice, affected by the Plum pox virus strain M (PPV-M). In 
this orchard, the symptomatic trees in 1992-1993 had been removed immediately and, as 
new trees showed symptoms in 1994, we were interested to know if they could be caused 
only by infectious vectors coming from outside the orchard (in which case these new 
cases should be independent of previous diseased trees). 

 
RESULTS AND DISCUSSION 
Numerical Validation 

Fig. 3A demonstrates that when two independent processes are simulated, the 
level of type I error is approximately equal to the predefined 5% level, but for low disease 
incidence, the test is slightly conservative. In addition, Fig. 3B shows that the power of 
this test is high (above 90% for the three levels of disease incidence) despite some 
censoring in the data; for a disease incidence of 3%, it also shows an increased power at 
the second distance class. During our analyses, we frequently noticed this feature, which 
is caused by the cumulative nature of the test statistic. 

 
Application to the Experimental Data Set 

A preliminary analysis of the map indicated no particular border effect, but we 
found a very significant aggregation of the disease within each of the two groups of 
diseased trees. The test of independence between these two groups of cases showed that 
the observed values of Sc(d) were lying far above the 95% band, for the first distance 
classes (Fig. 4). The corresponding P-values indicated a highly significant dependence 
between diseased trees at t1 and t2 up to 10 m (each distance class encompasses 2 m). 
Thus, as suggested by the map, there is a tight aggregation between new and earlier PPV-
symptomatic trees, despite roguing. In this orchard, it appears clearly that removing 
symptomatic trees did not immediately stop the autonomous intra-orchard dynamics of 
the disease, highlighting the need for repeated surveys.  
 
Concluding remarks 

This method allows testing the independence between two dates in regular 
plantings with intra-date clustering and between-date censoring. Such a test can provide 
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valuable clues about pathogen dispersal, especially when the epidemiology of a disease is 
poorly known, because it makes no assumption about the process of disease spread. The 
method described here in the context of diseases spreading in orchards can be applied in 
any regular planting, and more generally in any situation that can be formalized as a test 
of independence between two aggregated patterns where there is both an internal and an 
external censoring pattern. This test can be simplified if one of the potentially censoring 
patterns (either internal or external) is lacking. Moreover, when at least one of the two 
patterns shows no specific structure, it is possible to avoid using toroidal shifts, and 
slightly different tests based on the same general principle have been built for this 
situation (Thébaud et al., 2005). Further corrections could also be included to take into 
account some simple types of heterogeneity (e.g., edge effects, mixed cultivars) that 
would otherwise prevent any other explanation for the aggregation between two dates. 
This set of methods is available for the analysis of disease maps in order to study different 
epidemiological questions such as the secondary transmission of a disease, the efficiency 
of control methods, or the association between different systemic diseases. 
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Fig. 1. Handling the censoring patterns in the test of independence between two dates. A: 

Observed pattern. B: Toroidal shift of the observed pattern (1 unit left and down, 
here). C: Superimposed observed and shifted patterns. D: The remaining non-
censored points used to compute distances between dates. Each square symbolizes 
one tree. Filled symbols: observed t1 or t2 cases; open symbols: shifted t1 or t2 
cases. Circles: observed or shifted t1 cases; triangles: observed or shifted t2 cases. 
Crosses: observed missing trees; grey squares: shifted missing trees. 

 
 
 
 

 
 
Fig. 2. Map of a PPV-infected orchard (100 × 65 m). Each square symbolizes one tree. 

Black squares: trees with PPV symptoms in 1992-1993; grey squares: trees with 
PPV symptoms in 1994; cross: missing tree. 
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Fig. 3. Validation of the test on simulated patterns for three levels of disease incidence (3, 

14, and 25%). A: Level of type I error when aggregated but independent patterns 
are simulated (the test has a nominal error rate of 5%). B: Power of the test to 
reject the hypothesis of independence when dependent patterns are simulated. 

 
 
 

 
 

Fig. 4. Spatial dependence between the trees with Plum pox virus symptoms removed in 
1992-1993 and the symptomatic trees observed in 1994. Dotted line: mean value 
of the test statistic when the relative position of the two patterns is randomly 
shifted. The dashed lines delimit the central 95% of the simulated values, in which 
the observed values (circles) should lie if the patterns were independent. The 
shaded points indicate the P-value of the test for each distance class. 
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